【題目】一個水槽有進(jìn)水管和出水管各一個,進(jìn)水管每分鐘進(jìn)水a升,出水管每分鐘出水b升.水槽在開始5分鐘內(nèi)只進(jìn)水不出水,隨后15分鐘內(nèi)既進(jìn)水又出水,得到時間x(分)與水槽內(nèi)的水量y(升)之間的函數(shù)關(guān)系(如圖所示).
(1)求a、b的值;
(2)如果在20分鐘之后只出水不進(jìn)水,求這段時間內(nèi)y關(guān)于x的函數(shù)解析式及定義域.
【答案】(1)a=3,b=2;(2)y=-2x+75(20≤x≤37.5).
【解析】
(1)根據(jù)圖象上點的坐標(biāo),可以得出水槽內(nèi)水量與時間的關(guān)系,進(jìn)而得出a,b的值;
(2)根據(jù)在20分鐘之后只出水不進(jìn)水,得出圖象上點的坐標(biāo),進(jìn)而利用待定系數(shù)法求出即可.
解:(1)由圖象得知:水槽原有水5升,前5分鐘只進(jìn)水不出水,第5分鐘時水槽實際存水20升.
水槽每分鐘進(jìn)水a升,
于是可得方程:5a+5=20.
解得a=3.
按照每分鐘進(jìn)水3升的速度,15分鐘應(yīng)該進(jìn)水45升,加上第20分鐘時水槽內(nèi)原有的20升水,水槽內(nèi)應(yīng)該存水65升.
實際上,由圖象給出的信息可以得知:第20分鐘時,水槽內(nèi)的實際存水只有35升,
因此15分鐘的時間內(nèi)實際出水量為:65-35=30(升).
依據(jù)題意,得方程:15b=30.
解得b=2.
(2)按照每分鐘出水2升的速度,將水槽內(nèi)存有的35升水完全排出,需要17.5分鐘.
因此,在第37.5分鐘時,水槽內(nèi)的水可以完全排除.
設(shè)第20分鐘后(只出水不進(jìn)水),y關(guān)于x的函數(shù)解析式為y=kx+b.
將(20,35)、(37.5,0)代入y=kx+b,
得:,
解得:,
則y關(guān)于x的函數(shù)解析式為:y=-2x+75(20≤x≤37.5).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知有理數(shù)a、b、c滿足:a+c<0,ac>0,|b|=b,
(1)比較大。a______0;b_____;c_____0;
(2)先去絕對值,再化簡:|a﹣2b+c|﹣+2|b﹣2c|的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探究過程題)用直接開平方法解一元二次方程4(2x﹣1)2﹣25(x+1)2=0.
解:移項得4(2x﹣1)2=25(x+1)2,①
直接開平方得2(2x﹣1)=5(x+1),②
∴x=﹣7. ③
上述解題過程,有無錯誤如有,錯在第_____步,原因是_____,請寫出正確的解答過程_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F(xiàn)是BC上任意一點,連接AF交對角線BD于點E,連接EC.
(1)求證:AE=EC;
(2)當(dāng)∠ABC=60°,∠CEF=60°時,點F在線段BC上的什么位置?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,x軸表示一條東西方向的道路,y軸表示一條南北方向的道路,小麗和小明分別從十字路口O點處同時出發(fā),小麗沿著x軸以4千米時的速度由西向東前進(jìn),小明沿著y軸以5千米/時的速度由南向北前進(jìn).有一顆百年古樹位于圖中的P點處,古樹與x軸、y軸的距離分別是3千米和2千米.
問:(1)離開路口后經(jīng)過多少時間,兩人與這棵古樹的距離恰好相等?
(2)離開路口經(jīng)過多少時間,兩人與這顆古樹所處的位置恰好在一條直線上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課外小組活動中,老師提出了如下問題:
如果一個不等式中含有絕對值,并且絕對值符號中含有未知數(shù),我們把這個不等式叫做絕對值不等式,求絕對值不等式|x|>a(a>0)和|x|<a(a>0)的解集.
小明同學(xué)的探究過程如下:
先從特殊情況入手,求|x|>2和|x|<2的解集.確定|x|>2的解集過程如下:
先根據(jù)絕對值的幾何定義,在數(shù)軸上找到到原點的距離大于2的所有點所表示的數(shù),在數(shù)軸上確定范圍如下:
所以,|x|>2的解集是x>2或 .
再來確定|x|<2的解集:同樣根據(jù)絕對值的幾何定義,在數(shù)軸上找到到原點的距離小于2的所有點所表示的數(shù),在數(shù)軸上確定范圍如下:
所以,|x|<2的解集為: .
經(jīng)過大量特殊實例的實驗,小明得到絕對值不等式|x|>a(a>0)的解集為 ,|x|<a(a>0)的解集為 .
請你根據(jù)小明的探究過程及得出的結(jié)論,解決下列問題:
(1)請將小明的探究過程補充完整;
(2)求絕對值不等式2|x+1|-3<5的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三名打字員承擔(dān)一項打字任務(wù),已知如下信息:
信息一:甲單獨完成任務(wù)所需時間比乙單獨完成任務(wù)所需時間多5小時;
信息二:甲4小時完成的工作量與乙3小時完成的工作量相等;
信息三:丙的工作效率是甲的工作效率的2倍.
如果每小時只安排1名打字員,那么按照甲、乙、丙的順序至完成工作任務(wù),共需( )
A.小時B.小時C.小時D.小時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過的時間(單位:)之間的關(guān)系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列結(jié)論:①足球距離地面的最大高度為;②足球飛行路線的對稱軸是直線;③足球被踢出時落地;④足球被踢出時,距離地面的高度是.
其中正確結(jié)論的個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店購進(jìn)一批甲、乙兩種款型時尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進(jìn)價比乙種款型每件的進(jìn)價少30元.
(1)甲、乙兩種款型的T恤衫各購進(jìn)多少件?
(2)商店進(jìn)價提高60%標(biāo)價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型按標(biāo)價的五折降價銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com