【題目】如圖,在等邊△ABC中,D、E分別是BC、AC上的點(diǎn),且BD=CE,AD與BE相交于點(diǎn)P.下列結(jié)論:①AE=CD;②AD=BE;③∠AEB=∠ADC;④∠APE=60°.其中正確的結(jié)論共有( 。
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】D
【解析】
先根據(jù)SAS定理得出△ABD≌△BCE,結(jié)合全等三角形的性質(zhì)進(jìn)行判斷.
解:①∵△ABC是等邊三角形,
∴AC=BC,
∵BD=CE,
∴AE=CD.故正確;
②∵△ABC是等邊三角形,
∴∠ABD=∠C=60°,AB=BC.
在△ABD與△BCE中,
,
∴△ABD≌△BCE(SAS);
∴AD=BE.
故正確;
③由②知△ABD≌△BCE,所以∠ADB=∠CEB,則∠AEB=∠ADC,故正確;
④∵由②知△ABD≌△BCE.
∴∠BAD=∠EBC,
∴∠BAD+∠ABP=∠ABD=60°.
∵∠APE是△ABP的外角,
∴∠APE=∠BAD+∠ABP=60°.
故正確.
綜上所述,正確的結(jié)論有4個(gè).
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以邊長(zhǎng)為20cm的正三角形紙板的各頂點(diǎn)為端點(diǎn),在各邊上分別截取4cm長(zhǎng)的六條線段,過(guò)截得的六個(gè)端點(diǎn)作所在邊的垂線,形成三個(gè)有兩個(gè)直角的四邊形。把它們沿圖中虛線剪掉,用剩下的紙板折成一個(gè)底為正三角形的無(wú)蓋柱形盒子,則它的容積為多少cm( )
A. 124B. 144C. 110D. 94
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2),延長(zhǎng)CB交x軸于點(diǎn)A1,作正方形A1B1C1C,延長(zhǎng)C1B1交x軸于點(diǎn)A2,作正方形A2B2C2C1,…按這樣的規(guī)律進(jìn)行下去,第2014個(gè)正方形的面積為_________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中且,又、為的三等分點(diǎn).
(1)求證;
(2)證明:;
(3)若點(diǎn)為線段上一動(dòng)點(diǎn),連接則使線段的長(zhǎng)度為整數(shù)的點(diǎn)的個(gè)數(shù)________.(直接寫答案無(wú)需說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】晚飯后,小聰和小軍在社區(qū)廣場(chǎng)散步,小聰問小軍:“你有多高?”小軍一時(shí)語(yǔ)塞.小聰思考片刻,提議用廣場(chǎng)照明燈下的影長(zhǎng)及地磚長(zhǎng)來(lái)測(cè)量小軍的身高.于是,兩人在燈下沿直線NQ移動(dòng),如圖,當(dāng)小聰正好站在廣場(chǎng)的A點(diǎn)(距N點(diǎn)5塊地磚長(zhǎng))時(shí),其影長(zhǎng)AD恰好為1塊地磚長(zhǎng);當(dāng)小軍正好站在廣場(chǎng)的B點(diǎn)(距N點(diǎn)9塊地磚長(zhǎng))時(shí),其影長(zhǎng)BF恰好為2塊地磚長(zhǎng).已知廣場(chǎng)地面由邊長(zhǎng)為0.8米的正方形地磚鋪成,小聰?shù)纳砀?/span>AC為1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.請(qǐng)你根據(jù)以上信息,求出小軍身高BE的長(zhǎng)(結(jié)果精確到0.01米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)E,F分別為邊AD,BC上的一個(gè)動(dòng)點(diǎn),連接EF,以EF為對(duì)稱軸折疊四邊形CDEF,得到四邊形MNFE,點(diǎn)D,C的對(duì)應(yīng)點(diǎn)分別為M,N,當(dāng)點(diǎn)N恰好落在AB的三等分點(diǎn)時(shí),CF的長(zhǎng)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,P為對(duì)角線BD上一動(dòng)點(diǎn),以P為直角頂點(diǎn)作Rt△PMN交直線CD于點(diǎn)N,交直線BC于點(diǎn)M,
(1)如圖1,若點(diǎn)P與對(duì)角線交點(diǎn)O重合時(shí),求證:PM=PN.
(2)如圖2,若點(diǎn)P為線段OD中點(diǎn)時(shí),
①求證:BM+3DN=3;
②如圖3,當(dāng)M點(diǎn)在線段CB延長(zhǎng)線上,且點(diǎn)N使得3CN=DN,MN分別交AB,BD于E,F,求線段EF的長(zhǎng)(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩位同學(xué)利用燈光下的影子來(lái)測(cè)量一路燈A的高度,如圖,當(dāng)甲走到點(diǎn)C處時(shí),乙測(cè)得甲直立身高CD與其影子長(zhǎng)CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點(diǎn)E處時(shí),甲直立身高EF的影子恰好是線段EG,并測(cè)得EG=2.5m.已知甲直立時(shí)的身高為1.75m,求路燈的高AB的長(zhǎng).(結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCO為矩形,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且點(diǎn)B的坐標(biāo)為(-1,2),將此矩形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得矩形DEFO,拋物線y=-x2+bx+c過(guò)B,E兩點(diǎn).
(1)求此拋物線的函數(shù)關(guān)系式;
(2)將矩形ABCO向上平移,并且使此拋物線平分線段BC,求平移距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com