【答案】
分析:(1)將A、C的坐標(biāo)代入拋物線(xiàn)的解析式中,通過(guò)聯(lián)立方程組求得該拋物線(xiàn)的解析式;
(2)根據(jù)(1)題所得拋物線(xiàn)的解析式,可確定拋物線(xiàn)的對(duì)稱(chēng)軸方程以及B、C的坐標(biāo),進(jìn)而可求得D點(diǎn)坐標(biāo)以及CD的長(zhǎng);由于CD∥AB,可求得∠DCB=∠OBC=∠OCB=45°(由于OB=OC=3),因此CB是∠OCD的角平分線(xiàn),那么點(diǎn)D關(guān)于直線(xiàn)BC的對(duì)稱(chēng)點(diǎn)必在y軸上,過(guò)D作DD′⊥BC交y軸于D′,根據(jù)角平分線(xiàn)的性質(zhì)可得CD′=CD,由此可求出點(diǎn)D′的坐標(biāo);
(3)在(2)中已經(jīng)證得∠OBC=45°,若∠DBM=45°,那么∠OBM=DBC,過(guò)D作DE⊥BC于E,設(shè)直線(xiàn)BM交y軸于P,根據(jù)上面得到的等角,易證得△BOP∽△BED,由于△CDE是等腰Rt△,且已知CD的長(zhǎng),易求得CE、BE、DE的值,根據(jù)相似三角形所得比例線(xiàn)段,即可求得OP的值,也就得到了點(diǎn)P的坐標(biāo),利用待定系數(shù)法可求得直線(xiàn)BP的解析式,聯(lián)立拋物線(xiàn)的解析式即可求出點(diǎn)M的坐標(biāo).
解答:解:(1)由題意得:將A(-1,0),C(0,-3)代入y=ax
2+bx-3a得:
,
解得
∴拋物線(xiàn)的解析式為y=x
2-2x-3;
(2)∵拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=1,與x軸的另一個(gè)交點(diǎn)是B(3,0),
則點(diǎn)C關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)D(2,-3),
∴CD=2,且CD∥AB
∵OC=OB=3,且∠COB=90°,
∴∠OCB=∠BCD=45°
過(guò)點(diǎn)D作DD′⊥BC交y軸于點(diǎn)D′,則CD′=CD=2;
∴點(diǎn)D′(0,-1)
即點(diǎn)D關(guān)于直線(xiàn)BC對(duì)稱(chēng)點(diǎn)的坐標(biāo)為D′(0,-1);
(3)假設(shè)存在這樣的點(diǎn)M,使∠DBM=45°,設(shè)BM交y軸于點(diǎn)P;
∵∠OBC=∠DBM=45°,
∴∠OBP=∠CBD;
過(guò)點(diǎn)D作DE⊥BC,
∵∠BCD=45°,CD=2,
∴CE=DE=
,
∴BE=BC-CE=2
;
又∵∠BED=∠BOP=90°,
∴△BOP∽△BED,
∴
,
∴OP=1.5,即P(0,-1.5);
∴直線(xiàn)BP的解析式為:y=
x-
;
∴拋物線(xiàn)與直線(xiàn)BP的交點(diǎn)M
,
解得
或
(不合題意,舍去)
∴存在這樣的點(diǎn)M,即M(-
,-
).
點(diǎn)評(píng):此題考查了二次函數(shù)解析式的確定、軸對(duì)稱(chēng)的性質(zhì)、角平分線(xiàn)的性質(zhì)、相似三角形的判定和性質(zhì)以及函數(shù)圖象交點(diǎn)坐標(biāo)的求法等知識(shí),綜合性強(qiáng),難度較大.