如圖,AB是⊙O的直徑,弦CD交AB于點(diǎn)E,且AE=CD=8,∠BAC=∠BOD,則⊙O的半徑為
A.B.5C.4D.3
B

試題分析:∵∠BAC=∠BOD,∴。∴AB⊥CD。
∵AE=CD=8,∴DE=CD=4。
設(shè)OD=r,則OE=AE﹣r=8﹣r,
在RtODE中,OD=r,DE=4,OE=8﹣r,∴OD2=DE2+OE2,即r2=42+(8﹣r)2,解得r=5。故選B。 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)問題探究
數(shù)學(xué)課上,李老師給出以下命題,要求加以證明.
如圖1,在△ABC中,M為BC的中點(diǎn),且MA=BC,求證∠BAC=90°.
同學(xué)們經(jīng)過思考、討論、交流,得到以下證明思路:
思路一 直接利用等腰三角形性質(zhì)和三角形內(nèi)角和定理…
思路二 延長AM到D使DM=MA,連接DB,DC,利用矩形的知識(shí)…
思路三 以BC為直徑作圓,利用圓的知識(shí)…
思路四…
請(qǐng)選擇一種方法寫出完整的證明過程;
(2)結(jié)論應(yīng)用
李老師要求同學(xué)們很好地理解(1)中命題的條件和結(jié)論,并直接運(yùn)用(1)命題的結(jié)論完成以下兩道題:
①如圖2,線段AB經(jīng)過圓心O,交⊙O于點(diǎn)A,C,點(diǎn)D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求證:直線BD是⊙O的切線;
②如圖3,△ABC中,M為BC的中點(diǎn),BD⊥AC于D,E在AB邊上,且EM=DM,連接DE,CE,如果∠A=60°,請(qǐng)求出△ADE與△ABC面積的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在⊙O中,∠ABC=50°,則∠AOC等于【   】
A.50°B.80°C.90°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年四川廣安8分)雅安蘆山發(fā)生7.0級(jí)地震后,某校師生準(zhǔn)備了一些等腰直角三角形紙片,從每張紙片中剪出一個(gè)半圓制作玩具,寄給災(zāi)區(qū)的小朋友.已知如圖,是腰長為4的等腰直角三角形ABC,要求剪出的半圓的直徑在△ABC的邊上,且半圓的弧與△ABC的其他兩邊相切,請(qǐng)作出所有不同方案的示意圖,并求出相應(yīng)半圓的半徑(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為2的正方形ABCD中,以點(diǎn)D為圓心、DC為半徑作,點(diǎn)E在AB上,且與A、B兩點(diǎn)均不重合,點(diǎn)M在AD上,且ME=MD,過點(diǎn)E作EF⊥ME,交BC于點(diǎn)F,連接DE、MF.

(1)求證:EF是所在⊙D的切線;
(2)當(dāng)MA=時(shí),求MF的長;
(3)試探究:△MFE能否是等腰直角三角形?若是,請(qǐng)直接寫出MF的長度;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

直線AB與⊙O相切于B點(diǎn),C是⊙O與OA的交點(diǎn),點(diǎn)D是⊙O上的動(dòng)點(diǎn)(D與B,C不重合),若∠A=40°,則∠BDC的度數(shù)是
A.25°或155°B.50°或155°C.25°或130°D.50°或130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,AB垂直于弦CD,∠BOC=70°,則∠ABD=
A.20°B.46°C.55°D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將半徑為4cm的半圓圍成一個(gè)圓錐,這個(gè)圓錐的高為   cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,AB=4,AC=6,∠BAC=60º,∠BAC的角平分線交△ABC的外接圓⊙O于點(diǎn)E,則AE的長為       .

查看答案和解析>>

同步練習(xí)冊答案