【題目】在矩形ABCD中,AD=3,CD=4,點(diǎn)E在邊CD上,且DE=1.
(1)感知:如圖①,連接AE,過(guò)點(diǎn)E作EF⊥AE,交BC于點(diǎn)F,連接AF,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點(diǎn)P在矩形ABCD的邊AD上(點(diǎn)P不與點(diǎn)A、D重合),連接PE,過(guò)點(diǎn)E作EF⊥PE,交BC于點(diǎn)F,連接PF.求證:△PDE∽△ECF;
(3)應(yīng)用:如圖③,若EF交AB邊于點(diǎn)F,其他條件不變,且△PEF的面積是3,則AP的長(zhǎng)為 .
【答案】
(1)
證明:感知:如圖①,∵四邊形ABCD為矩形,
∴∠D=∠C=90°,
∴∠DAE+∠DEA=90°,
∵EF⊥AE,
∴∠AEF=90°,
∴∠DEA+∠FEC=90°,
∴∠DAE=∠FEC,
∵DE=1,CD=4,
∴CE=3,
∵AD=3,
∴AD=CE,
∴△ADE≌△ECF(ASA)
(2)
探究:如圖②,∵四邊形ABCD為矩形,
∴∠D=∠C=90°,
∴∠DPE+∠DEP=90°,
∵EF⊥PE,
∴∠PEF=90°,
∴∠DEP+∠FEC=90°,
∴∠DPE=∠FEC,
∴△PDE∽△ECF
(3)2
【解析】(3)應(yīng)用:如圖③,過(guò)F作FG⊥DC于G,
∵四邊形ABCD為矩形,
∴AB∥CD,
∴FG=BC=3,
∵PE⊥EF,
∴S△PEF= PEEF=3,
∴PEEF=6,
同理得:△PDE∽△EGF,
∴ ,
∴ ,
∴EF=3PE,
∴3PE2=6,
∴PE= ,
∵PE>0,
∴PE= ,
在Rt△PDE中,由勾股定理得:PD=1,
∴AP=AD﹣PD=3﹣1=2,
所以答案是:2.
【考點(diǎn)精析】本題主要考查了相似圖形和相似三角形的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握形狀相同,大小不一定相同(放大或縮。;判定:①平行;②兩角相等;③兩邊對(duì)應(yīng)成比例,夾角相等;④三邊對(duì)應(yīng)成比例;測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱(chēng)點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B、D.
(1)求二次函數(shù)的解析式.
(2)請(qǐng)直接寫(xiě)出D點(diǎn)的坐標(biāo).
(3)根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,且AB=2CD,E,F(xiàn)分別是AB,BC的中點(diǎn),EF與BD交于點(diǎn)H.
(1)求證:△EDH∽△FBH;
(2)若BD=6,求DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知點(diǎn)A(﹣2,0),B(0,4),C(0,3),過(guò)點(diǎn)C作直線交x軸于點(diǎn)D,使得以D,O,C為頂點(diǎn)的三角形與△AOB相似,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知反比例函數(shù)y= (k常數(shù),k≠1).
(1)若點(diǎn)A(2,1)在這個(gè)函數(shù)的圖象上,求k的值;
(2)若在這個(gè)函數(shù)圖象的每一個(gè)分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=9,試判斷點(diǎn)B(﹣ ,﹣16)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD、BE是兩條中線,則S△ABP:S△EDP=( )
A.1:2
B.1:3
C.1:4
D.2:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c過(guò)點(diǎn)A(4,0),B(﹣4,﹣4).
(1)求拋物線的解析式;
(2)若點(diǎn)P是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),過(guò)P作y軸的平行線,分別交拋物線及x軸于C、D兩點(diǎn).請(qǐng)問(wèn)是否存在這樣的點(diǎn)P,使PD=2CD?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y= (m為常數(shù),且m≠5).
(1)若在其圖象的每個(gè)分支上,y隨x的增大而增大,求m的取值范圍;
(2)若其圖象與一次函數(shù)y=﹣x+1圖象的一個(gè)交點(diǎn)的縱坐標(biāo)是3,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣6,0),B(﹣1,1),C(﹣3,3),將△ABC繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)90°后得到△A1BC1 .
(1)畫(huà)出△A1BC1 , 寫(xiě)出點(diǎn)A1、C1的坐標(biāo);
(2)計(jì)算線段BA掃過(guò)的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com