【題目】如圖,點D,E分別在等邊△ABC的邊AB,BC上,將△BDE沿直線DE翻折,使點B落在B1處.若∠ADB1=70°,則∠CEB1=___.
【答案】50°
【解析】
由等邊三角形的性質(zhì)可知:∠B=60°,由鄰補角的定義可知∠BDB1=110°,然后由翻折的性質(zhì)可求得∠BDE=55°,△BDE中由三角形的內(nèi)角和定理可求得∠BED=65°,然后由翻折的性質(zhì)可知∠BEB1=130°,從而可求得∠CEB1=50°.
由翻折的性質(zhì)可知:∠BDE=∠B1DE,
∵∠ADB1=70°,
∴∠BDB1=110°,∴∠BDE=∠BDB1=×110°=55°,
∵△ABC為等邊三角形,
∴∠B=60°.
在△BDE中,∠BED=180°-55°-60°=65°.
由翻折的性質(zhì)可知:∠BEB1=2×65°=130°
∴∠CEB1=180°-130°=50°.
故答案為:50°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船航行到 B 處時,測得小島 A 在船的北偏東 60°的方向,輪船從 B 處繼續(xù)向正東方向航行 20 海里到達 C 處時,測得小島 A 在北船的北偏東 30°的方向.
(1)若小島 A 到這艘輪船航行路線 BC 的距離是 AD,求 AD 的長.
(2)已知在小島周圍 17 海里內(nèi)有暗礁,若輪船不改變航向繼續(xù)向前行駛,試問輪船有無觸礁的危險?(≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一類隨機事件概率的計算方法:設(shè)試驗結(jié)果落在某個區(qū)域S中的每一點的機會均等,用A表示事件“試驗結(jié)果落在S中的一個小區(qū)域M中”,那么事件A發(fā)生的概率P(A)=. 有一塊邊長為30cm的正方形ABCD飛鏢游戲板,假設(shè)飛鏢投在游戲板上的每一點的機會均等.求下列事件發(fā)生的概率:
(1)在飛鏢游戲板上畫有半徑為5cm的一個圓(如圖1),求飛鏢落在圓內(nèi)的概率;
(2)飛鏢在游戲板上的落點記為點O,求△OAB為鈍角三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為(﹣3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過B點,且頂點在直線y=上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由.
(3)在(2)的條件下,若M點是CD所在直線下方該拋物線上的一個動點,過點M作MN平行于y軸交CD于點N.設(shè)點M的橫坐標(biāo)為t,MN的長度為s,求s與t之間的函數(shù)關(guān)系式,寫出自變量t的取值范圍,并求s取大值時,點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+2ax+c與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)當(dāng)a>0時,如圖所示,若點D是第三象限方拋物線上的動點,設(shè)點D的橫坐標(biāo)為m,三角形ADC的面積為S,求出S與m的函數(shù)關(guān)系式,并直接寫出自變量m的取值范圍;請問當(dāng)m為何值時,S有最大值?最大值是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交A(﹣1,0),B兩點,與y軸交于點C(0,3),拋物線的頂點為點E.
(1)求拋物線的解析式;
(2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一個動點,當(dāng)點P運動到點E時,求△PCD的面積;
(3)點N在拋物線對稱軸上,點M在x軸上,是否存在這樣的點M與點N,使以M,N,C,B為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標(biāo)(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( 。
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,平面直角坐標(biāo)系中,直線 y1=x+3與拋物線y2=﹣+2x 的圖象如圖,點P是 y2 上的一個動點,則點P到直線 y1 的最短距離為()
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com