(2012•岱岳區(qū)二模)四個全等的直角三角形圍成一個大正方形,中間空出的部分是一個小正方形,這樣就組成了一個“趙爽弦圖”(如圖).如果小正方形面積為4,大正方形面積為74,直角三角形中較小的銳角為θ,那么cosθ的值是
7
74
74
7
74
74
分析:根據(jù)大正方形的面積求得直角三角形的斜邊是
74
,根據(jù)大正方形減去小正方形的面積即四個直角三角形的面積和是70,求得兩條直角邊的乘積是35.再根據(jù)勾股定理知直角三角形的兩條直角邊的平方和等于74,聯(lián)立解方程組可得兩條直角邊分別是3,4,則cosθ=7
2
解答:解:根據(jù)題意,大正方形邊長=
74
,小正方形的邊長=
4
=2.
∴三角形的面積=(74-4)÷4=
35
2

設(shè)三角形兩直角邊為a、b,則
1
2
ab=
35
2

又a2+b2=74,
聯(lián)立解得
a=7
b=5
,
則cosθ=
7
74
=
7
74
74
;
故答案是:
7
74
74
點評:本題考查了勾股定理.此題中根據(jù)正方形以及直角三角形的面積公式求得直角三角形的三邊,進一步運用銳角三角函數(shù)的定義求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•岱岳區(qū)二模)半徑為2的⊙O與正方形ABCD相切于點P、Q,弦MN=2
3
,且MN在正方形的對角線BD上,則正方形的邊長為
4+
2
或4-
2
4+
2
或4-
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•岱岳區(qū)二模)已知,如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC,BD交于O點,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點E,F(xiàn).
(1)求證:當旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如能,說明理由并求出此時AC繞點O順時針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•岱岳區(qū)二模)2011年11月份,鹿城區(qū)環(huán)境檢測中心的關(guān)于“水心菜籃子”某一周空氣質(zhì)量報告中某項污染指數(shù)的數(shù)據(jù)如表所示,這組數(shù)據(jù)的眾數(shù)是( 。
檢測時間 周一 周二 周三 周四 周五 周六 周日
污染指數(shù) 21 22 21 24 20 22 21

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•岱岳區(qū)二模)某超市第一次用3000元從生產(chǎn)基地購進某品種水果,很快售完,第二次又用2400元購進相同品種的水果,第二次購進水果每千克的進價是第一次的1.2倍,且重量比第一次少了20千克.
(1)求兩次購進水果每千克的進價分別是多少元?
(2)在這兩次購進水果的運輸過程中,總重量損失10%,若這兩次水果的售價相同,全部售完后超市至少要獲得20%的總利潤,則該水果的售價最低應定為每千克多少元?(結(jié)果保留整數(shù)).

查看答案和解析>>

同步練習冊答案