計(jì)算(n為正整數(shù))的結(jié)果是

[  ]

A.

B.

C.

D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、從“特殊到一般”是數(shù)學(xué)上常用的一種思維方法.例如,“你會(huì)比較20112012與20122011的大小嗎?”我們可以采用如下的方法:
(1)通過計(jì)算比較下列各式中兩數(shù)的大。海ㄌ睢埃尽薄ⅰ埃肌被颉=”)
①12
21,②23
32,③34
43,④45
54,⑤56
65,…
(2)由(1)可以猜測(cè)nn+1與(n+1) n (n為正整數(shù))的大小關(guān)系:
當(dāng)n
≤2
時(shí),nn+1<(n+1)n;當(dāng)n
>2
時(shí),nn+1>(n+1)n;
(3)根據(jù)上面的猜想,可以知道:20112012
20122011(填“>”、“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、計(jì)算(-2)2n+1+2•(-2)2n(n為正整數(shù))的結(jié)果為
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將邊長(zhǎng)分別為
2
2
2
、3
2
、4
2
、…的正方形的面積分別記作S1、S2、S3、S4,…,計(jì)算S2-S1,S3-S2,S4-S3,….若邊長(zhǎng)為n•
2
(n為正整數(shù))的正方形面積記作Sn,根據(jù)你的計(jì)算結(jié)果,猜想Sn-Sn-1=
4n-2
4n-2
.(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察下列各式:
1
2
=
1
1×2
=
1
1
-
1
2
,
1
6
=
1
2×3
=
1
2
-
1
3
1
12
=
1
3×4
=
1
3
-
1
4
,
1
20
=
1
4×5
=
1
4
-
1
5
,…
由此可以推測(cè):
1
56
=
1
7×8
=
1
7
-
1
8
1
7×8
=
1
7
-
1
8
,
1
72
=
1
8×9
=
1
8
-
1
9
1
8×9
=
1
8
-
1
9

(2)用含字母n(n為正整數(shù))的等式表示(1)中的一般規(guī)律:
1
n(n+1)
=
1
n
-
1
n+1
1
n(n+1)
=
1
n
-
1
n+1

(3)請(qǐng)用(2)中的規(guī)律計(jì)算:
1
(a+1)(a+2)
+
1
(a+2)(a+3)
+
1
(a+3)(a+4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個(gè)三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著(a+b)3=a3+3a2b+3ab2+b2展開式中的系數(shù)等等.

(1)根據(jù)上面的規(guī)律,則(a+b)5的展開式=
a5+5a4b+10a3b2+10a2b3+5ab4+b5
a5+5a4b+10a3b2+10a2b3+5ab4+b5

(2)利用上面的規(guī)律計(jì)算:25-5×24+10×23-10×22+5×2-1=
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案