【題目】如圖.在平行四邊形ABCD中,過點(diǎn)BBMAC于點(diǎn)E,交CD于點(diǎn)M,過點(diǎn)DDNAC于點(diǎn)F,交AB于點(diǎn)N

1)求證:四邊形BMDN是平行四邊形;

2)已知AF5EM3,求AN的長.

【答案】(1)詳見解析;(2)

【解析】

1)只要證明DNBMDMBN即可;

2)只要證明CEM≌△AFN,可得FNEM3,在RtAFN中,根據(jù)勾股定理AN即可解決問題.

1)∵四邊形ABCD是平行四邊形,

CDAB,

BMACDNAC,

DNBM,

∴四邊形BMDN是平行四邊形;

2)∵四邊形BMDN是平行四邊形,

DMBN

CDABCDAB,

CMAN,∠MCE=∠NAF,

∵∠CEM=∠AFN90°,

∴△CEM≌△AFN,

FNEM3,

RtAFN中,AN

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC⊙O于點(diǎn)E,∠ABC的平分線BFAD于點(diǎn)F,交BC于點(diǎn)D

1)求證:BEEF;

2)若DE4,DF3,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y1ax2+b經(jīng)過C(﹣2,4),D(﹣4,4)兩點(diǎn).

1)求拋物線y1的函數(shù)表達(dá)式;

2)將拋物線y1沿x軸翻折,再向右平移,得到拋物線y2,與y2軸交于點(diǎn)F,點(diǎn)E為拋物線2上一點(diǎn),要使以CD為邊,C、DE、F四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,求所有滿足條件的拋物線y2的函表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:如圖1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半徑為2,P為圓上一動點(diǎn),連結(jié)AP、BP,求AP+BP的最小值.

(1)嘗試解決:為了解決這個問題,下面給出一種解題思路:如圖2,連接CP,在CB上取點(diǎn)D,使CD=1,則有,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴,∴PD=BP,∴AP+BP=AP+PD.

請你完成余下的思考,并直接寫出答案:AP+BP的最小值為   

(2)自主探索:在“問題提出”的條件不變的情況下,AP+BP的最小值為   

(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,點(diǎn)P是上一點(diǎn),求2PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)A的直線l分別與x軸、y軸交于點(diǎn)C,D

1)求直線l的函數(shù)表達(dá)式.

2Px軸上一點(diǎn),若PCD為等腰三角形直接寫出點(diǎn)P的坐標(biāo).

3)將線段ABB點(diǎn)旋轉(zhuǎn)90°,直接寫出點(diǎn)A對應(yīng)的點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)、點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)求的面積;

3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A-2,m)繞坐標(biāo)原點(diǎn)O順時針旋轉(zhuǎn)90°后,恰好落在圖中⊙P中的陰影區(qū)域(包括邊界)內(nèi),⊙P的半徑為1,點(diǎn)P的坐標(biāo)為(3,2),則m的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展以素質(zhì)提升為主題的研學(xué)活動,推出了以下四個項(xiàng)目供學(xué)生選擇:A.模擬駕駛;B.軍事競技;C.家鄉(xiāng)導(dǎo)游;D.植物識別.學(xué)校規(guī)定:每個學(xué)生都必須報名且只能選擇其中一個項(xiàng)目.八年級(3)班班主任劉老師對全班學(xué)生選擇的項(xiàng)目情況進(jìn)行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖中的信息,解決下列問題:

(1)八年級(3)班學(xué)生總?cè)藬?shù)是   ,并將條形統(tǒng)計圖補(bǔ)充完整;

(2)劉老師發(fā)現(xiàn)報名參加植物識別的學(xué)生中恰好有兩名男生,現(xiàn)準(zhǔn)備從這些學(xué)生中任意挑選兩名擔(dān)任活動記錄員,請用列表或畫樹狀圖的方法,求恰好選中1名男生和1名女生擔(dān)任活動記錄員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生的安全意識,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查.根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

1)這次調(diào)查一共抽取了   名學(xué)生,將條形統(tǒng)計圖補(bǔ)充完整;

2)扇形統(tǒng)計圖中,“較強(qiáng)”層次所占圓心角的大小為   °;

3)若該校有1800名學(xué)生,現(xiàn)要對安全意識為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,請你估計全校需要強(qiáng)化安全教育的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案