【題目】閱讀下列材料:
小明在一本課外讀物上看到一道有意思的數(shù)學(xué)題:例1、解不等式:,根據(jù)絕對值的幾何意義,到原點(diǎn)距離小于1的點(diǎn)在數(shù)軸上集中在-1和+1之間,如圖:
所以,該不等式的解集為-1<x<1.
因此,不等式的解集為x<-1或x>1.
根據(jù)以上方法小明繼續(xù)探究:例2:求不等式:的解集,即求到原點(diǎn)的距離大于2小于5的點(diǎn)的集合就集中在這樣的區(qū)域內(nèi),如圖:
所以,不等式的解集為-5<x<-2或2<x<5.
仿照小明的做法解決下面問題:
(1)不等式的解集為____________.
(2)不等式的解集是____________.
(3)求不等式的解集.
【答案】(1)-5<x<5 ;(2)-3<x<-1或1<x<3;(3)0<x<4.
【解析】
(1)參照范例1解答即可;
(2)參照范例2解答即可;
(3)先把看作一個整體,再參照范例2解答即可.
(1)由范例1可知:不等式的解集就是數(shù)軸上到原點(diǎn)的距離小于5的點(diǎn)所對應(yīng)的數(shù)組成的,如下圖所示:
∴不等式的解集為:;
(2)由范例2可知:求不等式的解集就是由數(shù)軸上到原點(diǎn)的距離大于1,而小于3的點(diǎn)所對應(yīng)的數(shù)組成,如下圖所示:
∴不等式的解集是或;
(3)由(1)可知,在不等式中,當(dāng)把看作一個整體時(shí),的取值范圍就是數(shù)軸上到原點(diǎn)的距離小于2的點(diǎn)表示的數(shù)組成的,如下圖所示:
∴,
解得:
∴不等式的解集是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小米是一個愛動腦筋的孩子,他用如下方法作∠AOB的角平分線: 作法:如圖,
⑴在射線OA上任取一點(diǎn)C,過點(diǎn)C作CD∥OB;
⑵以點(diǎn)C為圓心,CO的長為半徑作弧,交CD于點(diǎn)E;
⑶作射線OE.
所以射線OE就是∠AOB的角平分線.請回答:小米的作圖依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,BC=6cm.射線 AG∥BC,點(diǎn) E 從點(diǎn) A 出發(fā)沿射線 AG 以 2cm/s 的速度運(yùn)動,當(dāng)點(diǎn) E 先出發(fā) 1s 后,點(diǎn) F 也從點(diǎn) B 出發(fā)沿射線 BC 以 cm/s 的速度運(yùn)動,分別連結(jié) AF,CE.設(shè)點(diǎn) F 運(yùn)動時(shí)間為 t(s),其中 t>0.
(1)當(dāng) t 為何值時(shí),∠BAF<∠BAC;
(2)當(dāng) t 為何值時(shí),AE=CF;
(3)當(dāng) t 為何值時(shí),S△ABF+S△ACE<S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),其部分圖象如圖所示,給出下列四個結(jié)論: ①a<0; ②b2﹣4ac>0;③2a﹣b=0;④若點(diǎn)P(x0 , y0)在拋物線上,則ax02+bx0+c≤a﹣b+c.其中結(jié)論正確的是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市美化工程招標(biāo)時(shí),有甲、乙兩個工程隊(duì)投標(biāo).經(jīng)測算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天;若由甲隊(duì)先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工一天,需付工程款3.5萬元,乙隊(duì)施工一天需付工程款2萬元.若該工程計(jì)劃在70天內(nèi)完成,在不超過計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢?還是由甲乙兩隊(duì)全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD的對角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)E、F.
求證:四邊形AFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在□ABCD中,E,F(xiàn)分別在BC,AD上,若想使四邊形AFCE為平行四邊形,須添加一個條件,這個條件可以是( )
①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE。
A. ①或② B. ②或③ C. ③或④ D. ①或③或④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)證明四邊形ABDF是平行四邊形;
(2)若AF=DF=5,AD=6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考體育測試滿分為40分,某校九年級進(jìn)行了中考體育模擬測試,隨機(jī)抽取了部分學(xué)生的考試成績進(jìn)行統(tǒng)計(jì)分析,并把分析結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.試根據(jù)統(tǒng)計(jì)圖中提供的數(shù)據(jù),回答下列問題:
(1)抽取的樣本中,成績?yōu)?9分的人數(shù)有人;
(2)抽取的樣本中,考試成績的中位數(shù)是分,眾數(shù)是分;
(3)若該校九年級共有500名學(xué)生,試根據(jù)這次模擬測試成績估計(jì)該校九年級將有多少名學(xué)生能得到滿分?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com