二次函數(shù)y=ax2+bx+c的y與x的部分對應(yīng)值如下表:
x 0 1 3 4
y 2 4 2 -2
則下列判斷中正確的是(  )
分析:利用表格中數(shù)據(jù)得出拋物線對稱軸以及對應(yīng)坐標(biāo)軸交點(diǎn),進(jìn)而根據(jù)圖表內(nèi)容找到方程ax2+bx+c=0即y=0時(shí)x的值取值范圍,得出答案即可.
解答:解;A、由圖表中數(shù)據(jù)可得出:x=1.5時(shí),y有最大值,故此函數(shù)開口向下,故此選項(xiàng)錯(cuò)誤;
B、∵x=0時(shí),y=2,故拋物線與y軸交于正半軸,故此選項(xiàng)錯(cuò)誤;
C、當(dāng)x=-1時(shí)與x=4時(shí)對應(yīng)y值相等,故y<0,故此選項(xiàng)錯(cuò)誤;
D、∵y=0時(shí),-1<x<0,∴方程ax2+bx+c=0的負(fù)根在0與-1之間,此選項(xiàng)正確.
故選;D.
點(diǎn)評:本題考查了二次函數(shù)的性質(zhì)以及一元二次方程的解,解答該題時(shí),充分利用了二次函數(shù)圖象的對稱性得出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C(0,
3
)
,當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,拋物線的對稱軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時(shí),有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點(diǎn),PQ:QR=1:3,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時(shí),y>0.其中正確結(jié)論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案