解決數(shù)學(xué)問(wèn)題時(shí),我們經(jīng)常要回到基本定義與基本方法思考.試?yán)梅匠痰慕獾亩x及解方程組的基本方法解決以下問(wèn)題:
已知a是關(guān)于x的方程x2-(2k+1)x+4=0,及3x2-(6k-1)x+8=0的公共解,則a=________,k=________.

1    2
分析:因?yàn)閍是這兩個(gè)方程的公共根,所以a同時(shí)滿足這兩個(gè)方程,把a(bǔ)代入這兩個(gè)方程,用含k的代數(shù)式表示a,然后把a(bǔ)代入原方程就可以求出k的值,再求出a.
解答:∵a是關(guān)于x的方程x2-(2k+1)x+4=0和3x2-(6k-1)x+8=0的公共解,
∴有方程組:

①-②得:-a+=0,
∴a=1.
把a(bǔ)=1代入①有:1-(2k+1)+4=0,
解得k=2.
故答案為:a=1,k=2.
點(diǎn)評(píng):本題考查的是一元二次方程的解,先設(shè)兩個(gè)方程的公共解為a,得到關(guān)于a和字母系數(shù)k的方程組,解方程組就能求出a和k的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

21、我們?cè)诮鉀Q數(shù)學(xué)問(wèn)題時(shí),經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問(wèn)題,通過(guò)某種轉(zhuǎn)化過(guò)程,歸結(jié)到一類已解決或比較容易解決的問(wèn)題.
譬如,在學(xué)習(xí)了一元一次方程的解法以后,進(jìn)一步研究二元一次方程組的解法時(shí),我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進(jìn)一步研究多邊形的內(nèi)角和問(wèn)題時(shí),我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問(wèn)題.
問(wèn)題提出:如何把一個(gè)正方形分割成n(n≥9)個(gè)小正方形?
為解決上面問(wèn)題,我們先來(lái)研究?jī)煞N簡(jiǎn)單的“基本分割法”.
基本分割法1:如圖①,把一個(gè)正方形分割成4個(gè)小正方形,即在原來(lái)1個(gè)正方形的基礎(chǔ)上增加了3個(gè)正方形.
基本分割法2:如圖②,把一個(gè)正方形分割成6個(gè)小正方形,即在原來(lái)1個(gè)正方形的基礎(chǔ)上增加了5個(gè)正方形.

問(wèn)題解決:有了上述兩種“基本分割法”后,我們就可以把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
(1)把一個(gè)正方形分割成9個(gè)小正方形.
一種方法:如圖③,把圖①中的任意1個(gè)小正方形按“基本分割法2”進(jìn)行分割,就可增加5個(gè)小正方形,從而分割成4+5=9(個(gè))小正方形.
另一種方法:如圖④,把圖②中的任意1個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3個(gè)小正方形,從而分割成6+3=9(個(gè))小正方形.
(2)把一個(gè)正方形分割成10個(gè)小正方形.
方法:如圖⑤,把圖①中的任意2個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3×2個(gè)小正方形,從而分割成4+3×2=10(個(gè))小正方形.
(3)請(qǐng)你參照上述分割方法,把圖⑥給出的正方形分割成11個(gè)小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說(shuō)明分割方法)
(4)把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
方法:通過(guò)“基本分割法1”、“基本分割法2”或其組合把一個(gè)正方形分割成9個(gè)、10個(gè)和11個(gè)小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個(gè)小正方形,從而把一個(gè)正方形分割成12個(gè)、13個(gè)、14個(gè)小正方形,依次類推,即可把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
從上面的分法可以看出,解決問(wèn)題的關(guān)鍵就是找到兩種基本分割法,然后通過(guò)這兩種基本分割法或其組合把正方形分割成n(n≥9)個(gè)小正方形.
類比應(yīng)用:仿照上面的方法,我們可以把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形.
(1)基本分割法1:把一個(gè)正三角形分割成4個(gè)小正三角形(請(qǐng)你在圖a中畫出草圖);
(2)基本分割法2:把一個(gè)正三角形分割成6個(gè)小正三角形(請(qǐng)你在圖b中畫出草圖);
(3)分別把圖c、圖d和圖e中的正三角形分割成9個(gè)、10個(gè)和11個(gè)小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說(shuō)明分割方法);

(4)請(qǐng)你寫出把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形的分割方法(只寫出分割方法,不用畫圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在解決數(shù)學(xué)問(wèn)題時(shí),我們經(jīng)常要回到基本定義與基本方法去思考.試?yán)梅匠痰慕獾亩x及解方程組的基本方法解決以下問(wèn)題:
已知a是關(guān)于x的方程x2-(2k+1)x+4=0及3x2-(6k-1)x+8=0的公共解,求a和k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在解決數(shù)學(xué)問(wèn)題時(shí),我們經(jīng)常要回到基本定義與基本方法去思考.試?yán)梅匠痰慕獾亩x及解方程組的基本方法解決以下問(wèn)題:
已知a是關(guān)于x的方程x2-(2k+1)x+4=0及3x2-(6k-1)x+8=0的公共解,求a和k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在解決數(shù)學(xué)問(wèn)題時(shí),我們經(jīng)常要回到基本定義與基本方法去思考.試?yán)梅匠痰慕獾亩x及解方程組的基本方法解決以下問(wèn)題:
已知a是關(guān)于x的方程x2-(2k+1)x+4=0及3x2-(6k-1)x+8=0的公共解,求a和k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案