【題目】問題情境:

在綜合與實踐課上,老師讓同學(xué)們以矩形紙片的剪拼為主題開展數(shù)學(xué)活動.如圖1,將矩形紙片沿對角線剪開,得到.并且量得,.

操作發(fā)現(xiàn):

(1)將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使,得到如圖2所示的,過點的平行線,與的延長線交于點,則四邊形的形狀是________.

(2)創(chuàng)新小組將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使、三點在同一條直線上,得到如圖3所示的,連接,取的中點,連接并延長至點,使,連接,得到四邊形,發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.

實踐探究:

(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進行如下操作:將沿著方向平移,使點與點重合,此時點平移至點,相交于點,如圖4所示,連接,試求的值.

【答案】(1)菱形;(2)證明見解析;(3)

【解析】(1)根據(jù)菱形的判定方法進行判定即可.

根據(jù)正方形的判定方法進行判定即可.

RtABC中,根據(jù)sinACB=,求出∠ACB=30°,RtBCH,求出RtABH中,求出的長度,根據(jù)銳角三角函數(shù)的定義求解即可.

(1)在如圖1中,
AC是矩形ABCD的對角線,
∴∠B=D=90°,ABCD
∴∠ACD=BAC,
在如圖2中,由旋轉(zhuǎn)知,AC'=AC,AC'D=ACD,
∴∠BAC=AC'D
∵∠CAC'=BAC,
∴∠CAC'=AC'D,
ACC'E,
AC'CE
∴四邊形ACEC'是平行四邊形,
AC=AC',
ACEC'是菱形,
故答案為:菱形;
(2)在圖1中,∵四邊形ABCD是矩形,
ABCD,
∴∠CAD=ACB,B=90°,
∴∠BAC+ACB=90°,
在圖3中,由旋轉(zhuǎn)知,∠DAC'=DAC,
∴∠ACB=DAC'
∴∠BAC+DAC'=90°,
∵點D,A,B在同一條直線上,
∴∠CAC'=90°,
由旋轉(zhuǎn)知,AC=AC',
∵點FCC'的中點,
AGCC',CF=C'F,
AF=FG
∴四邊形ACGC'是平行四邊形,
AGCC'
ACGC'是菱形,
∵∠CAC'=90°,
∴菱形ACGC'是正方形;
(3)在RtABC中,AB=2,AC=4,
BC'=AC=4,BD=BC=2,sinACB=,
∴∠ACB=30°,
由(2)結(jié)合平移知,∠CHC'=90°,
RtBCH中,∠ACB=30°,
BH=BCsin30°=,

RtABH中,AH=AB=1,
CH=AC-AH=4-1=3,
RtCHC'中,tanC′CH=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在ABC中,BO,CO分別平分∠ABC,ACB,交于O,CE為外角∠ACD的平分線,BO的延長線交CE于點E,記∠BAC=1,BEC=2,則以下結(jié)論①∠1=22,②∠BOC=32,③∠BOC=90°+1,④∠BOC=90°+2正確的是(  )

A. ①②③ B. ①③④ C. ①④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,DAC的中點,FAB邊上一點,AF=2BF,E為射線BC上一點,EDF=120°,=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電力維修小組從點出發(fā),在東西線路上檢修電線,如果規(guī)定向東為正,向西為負,一天中行駛里程(單位:千米)記錄如下:+5,-4-7,+8-9,+6,+5

1)求收工時在地的什么方位?

2)在記錄中,距離最遠有 千米?

3)若每千米耗油0.2升,油價為5/升,問出發(fā)到收工時共需要多少元油錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,已知ABC,ABC=90°,頂點A在第一象限,B,Cx軸的正半軸上(CB的右側(cè)),BC=2,AB=2ADCABC關(guān)于AC所在的直線對稱.

(1)當OB=2時,求點D的坐標;

(2)若點A和點D在同一個反比例函數(shù)的圖象上,求OB的長;

(3)如圖2,將第(2)題中的四邊形ABCD向右平移,記平移后的四邊形為A1B1C1D1,過點D1的反比例函數(shù)y=(k≠0)的圖象與BA的延長線交于點P.問:在平移過程中,是否存在這樣的k,使得以點P,A1,D為頂點的三角形是直角三角形?若存在,請直接寫出所有符合題意的k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖:已知D為等腰直角ABC斜邊BC上的一個動點(DB、C均不重合),連結(jié)AD,ADE是等腰直角三角形,DE為斜邊,連結(jié)CE,求∠ECD的度數(shù).

(2)(1)ABC、ADE都改為等邊三角形,D點為ABCBC邊上的一個動點(DBC均不重合),當點D運動到什么位置時,DCE的周長最小?請?zhí)角簏cD的位置,試說明理由,并求出此時∠EDC的度數(shù).

(3)(2)的條件下,當點D運動到使DCE的周長最小時,M是此時射線AD上的一個動點,CM為邊,在直線CM的下方畫等邊三角形CMN,ABC的邊長為4,請直接寫出DN長度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,DABC的邊AB上一點,DEBC,交邊AC于點E,延長DE至點F,使EFDE,連接BF,交邊AC于點G,連接CF.

(1)求證:;

(2)如果CF2FG·FB,求證:CG·CEBC·DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAC,ADAE,∠BAC=∠DAE

1)求證:△ABD≌△ACE;

2)若∠125°,∠230°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店5月份購進甲、乙兩種水果共花費1700元,其中甲種水果8元/千克,乙種水果18元/千克.6月份,這兩種水果的進價上調(diào)為:甲種水果10元/千克,乙種水果20元/千克.

(1)若該店6月份購進這兩種水果的數(shù)量與5月份都相同,將多支付貨款300元,求該店5月份購進甲、乙兩種水果分別是多少千克?

(2)若6月份將這兩種水果進貨總量減少到120千克,且甲種水果不超過乙種水果的3倍,則6月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?

查看答案和解析>>

同步練習(xí)冊答案