精英家教網 > 初中數學 > 題目詳情
如圖,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求證:梯形ABCD是等腰梯形.
證明:∵AB∥DE,∴∠DEC=∠B。
∵∠DEC=∠C,∴∠B=∠C。
∴梯形ABCD是等腰梯形。

試題分析:由AB∥DE,∠DEC=∠C,易證得∠B=∠C,又由同一底上兩個角相等的梯形是等腰梯形,即可證得結論。
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

在梯形ABCD中,AD∥BC,對角線AC和BD交于點O,下列條件中,能判斷梯形ABCD是等腰梯形的是【   】
A.∠BDC =∠BCDB.∠ABC =∠DABC.∠ADB =∠DACD.∠AOB =∠BOC

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知ABCD中,∠A+∠C=200°,則∠B的度數是
A.100°B.160°C.80°D.60°

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,邊長分別為4和8的兩個正方形ABCD和CEFG并排放在一起,連結BD并延長交EG于點T,交FG于點P,則GT=
A.B.C.2D.1

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點G,點E、F分別為AG、CD的中點,連接DE、FG.

(1)求證:四邊形DEGF是平行四邊形;
(2)當點G是BC的中點時,求證:四邊形DEGF是菱形.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

正方形ABCD中,AC、BD相交于點O,點E是射線AB上一點,點F是直線AD上一點,BE=DF,連接EF交線段BD于點G,交AO于點H.若AB=3,AG=,則線段EH的長為   

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在△ABC中,AB=AC,點D、E、F分別是AC、BC、BA延長線上的點,四邊形ADEF為平行四邊形.求證:AD=BF.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,是由四個直角邊分別為3和4全等的直角三角形拼成的“趙爽弦圖”,那么陰影部分面積為      

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在四邊形ABCD中,AD∥BC,AD=CD,點E在DC的延長線上,AE交BC邊于點F,且AE=AB.
 
(1)如圖l,求證:∠B=∠E:
(2)如圖2,在(1)的條件下,在BC上取一點M,使BM=CE,連接AM,過M作MH⊥AE于H,連接CH,若∠BAE=∠EHC=60°,CF=2,求線段AH的長.

查看答案和解析>>

同步練習冊答案