【題目】如圖,在小正方形的邊長均為l的方格紙中,有線段AB,BC.點A,B,C均在小正方形的頂點上.
(1)在圖1中畫出四邊形ABCD,四邊形ABCD是軸對稱圖形,點D在小正方形的項點上:
(2)在圖2中畫四邊形ABCE,四邊形ABCE不是軸對稱圖形,點E在小正方形的項點上,∠AEC=90°,EC>EA;直接寫出四邊形ABCE的面積為 .
【答案】
(1)
解:如圖1,四邊形ABCD即為所求;
(2)7
【解析】解:如圖2,四邊形ABCE即為所求,S四邊形ABCE=3×4﹣ ×1×1﹣ ×3×3=12﹣ ﹣ =7.
所以答案是:7.
(1)根據(jù)軸對稱的性質(zhì)畫出圖形即可;(2)畫出四邊形ABCDE,再求出其面積即可.
【考點精析】本題主要考查了軸對稱的性質(zhì)的相關(guān)知識點,需要掌握關(guān)于某條直線對稱的兩個圖形是全等形;如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線;兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,過點A(﹣2,0)的直線交y軸正半軸于點B,將直線AB繞著點順時針旋轉(zhuǎn)90°后,分別與x軸、y軸交于點D、C.
(1)若OB=4,求直線AB的函數(shù)關(guān)系式;
(2)連接BD,若△ABD的面積是5,求點B的運動路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光伏發(fā)電惠民生,據(jù)衢州晚報載,某家庭投資4萬元資金建造屋頂光伏發(fā)電站,遇到晴天平均每天可發(fā)電30度,其它天氣平均每天可發(fā)電5度,已知某月(按30天計)共發(fā)電550度.
(1)求這個月晴天的天數(shù).
(2)已知該家庭每月平均用電量為150度,若按每月發(fā)電550度計,至少需要幾年才能收回成本(不計其它費用,結(jié)果取整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D在AC邊上,BD=CD,E在BC邊上,AE=AB,過點E作EF⊥BC,交AC于F.若AD=5,CE=8,則EF的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位運動員在一段2000米長的筆直公路上進(jìn)行跑步比賽,比賽開始時甲在起點,乙在甲的前面200米,他們同時同向出發(fā)勻速前進(jìn),甲的速度是8米/秒,乙的速度是6米/秒,先到終點者在終點原地等待.設(shè)甲、乙兩人之間的距離是y米,比賽時間是x秒,當(dāng)兩人都到達(dá)終點計時結(jié)束,整個過程中y與x之間的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點O為坐標(biāo)原點,直線y= x+1與拋物線y= x2+bx+c交于A,B兩點,點A在x軸上,點B的橫坐標(biāo)為4.
(1)求拋物線的解析式;
(2)拋物線y= x2+bx+c 交x軸正半軸于點C,橫坐標(biāo)為t的點P在第四象限的拋物線上,過點P作AB的垂線交x軸于點E,點Q為垂足,設(shè)CE的長為d,求d與t之間的函數(shù)關(guān)系式,直接寫出自變量t的取值范圍:
(3)在(2)的條件下,過點B作y軸的平行線交x軸于點D,連接DQ.當(dāng)∠AQD=3∠PQD時,求點P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了維護(hù)海洋權(quán)益,新組建的國家海洋局加大了在南海的巡邏力度,一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍的船只停在C處海域.如圖所示,AB=60( )海里,在B處測得C在北偏東45°的方向上,A處測得C在北偏西30°的方向上,在海岸線AB上有一燈塔D,測得AD=120( )海里.
(1)分別求出A與C及B與C的距離AC、BC(結(jié)果保留根號)
(2)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,圖中有無觸礁的危險?
(參考數(shù)據(jù): =1.41, =1.73, =2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標(biāo)分別為B(3,0).C(0,3),點M是拋物線的頂點.
(1)求二次函數(shù)的關(guān)系式;
(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說明理由;
(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有6個質(zhì)地和大小均相同的球,每個球只標(biāo)有一個數(shù)字,將標(biāo)有3,4,5的三個球放入甲箱,標(biāo)有5,6,7的三個球放入乙箱中.
(1)小宇從甲箱中隨機(jī)摸出一個球,則“摸出標(biāo)有數(shù)字是5的球”的概率是;
(2)小宇從甲箱中,小靜從乙箱中各自隨機(jī)摸出一個球,若小宇所摸球上的數(shù)字比小靜所摸球上的數(shù)字小于1,則稱小宇“屢勝一籌”,請你用列表法(或畫樹狀圖),求小宇“屢勝一籌”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com