【題目】如圖,在半徑為4的⊙O中,CD為直徑,AB⊥CD且過(guò)半徑OD的中點(diǎn),點(diǎn)E為⊙O上一動(dòng)點(diǎn),CF⊥AE于點(diǎn)F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為( )

A. B. C. D.

【答案】D

【解析】

連接AC,AOABCD,利用垂徑定理得到GAB的中點(diǎn)由中點(diǎn)的定義確定出OG的長(zhǎng),在直角三角形AOG,AOOG的長(zhǎng)利用勾股定理求出AG的長(zhǎng),進(jìn)而確定出AB的長(zhǎng),CO+GO求出CG的長(zhǎng),在直角三角形AGC,利用勾股定理求出AC的長(zhǎng)CF垂直于AE,得到三角形ACF始終為直角三角形點(diǎn)F的運(yùn)動(dòng)軌跡為以AC為直徑的半徑,如圖中紅線所示當(dāng)E位于點(diǎn)B時(shí),CGAE,此時(shí)FG重合;當(dāng)E位于D時(shí),CAAE此時(shí)FA重合,可得出當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng),在直角三角形ACG,利用銳角三角函數(shù)定義求出∠ACG的度數(shù)進(jìn)而確定出所對(duì)圓心角的度數(shù),再由AC的長(zhǎng)求出半徑,利用弧長(zhǎng)公式即可求出的長(zhǎng)即可求出點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)

連接AC,AO

ABCDGAB的中點(diǎn),AG=BG=AB

∵⊙O的半徑為4,ABCD且過(guò)半徑OD的中點(diǎn),OG=2,∴在RtAOG,根據(jù)勾股定理得AG==2,AB=2AG=4

又∵CG=CO+GO=4+2=6,∴在RtAGC,根據(jù)勾股定理得AC==4

CFAE,∴△ACF始終是直角三角形,點(diǎn)F的運(yùn)動(dòng)軌跡為以AC為直徑的半圓,當(dāng)E位于點(diǎn)B時(shí),CGAE此時(shí)FG重合當(dāng)E位于D時(shí),CAAE,此時(shí)FA重合,∴當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí)點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng).在RtACG,tanACG==∴∠ACG=30°,所對(duì)圓心角的度數(shù)為60°.

∵直徑AC=4的長(zhǎng)為=π,則當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí)點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為π.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①,已知線段,以為一邊作等邊 (尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);

(2)如圖②,已知,,分別以為邊作等邊和等邊,連接,求的最大值;

(3)如圖③,已知,,,,內(nèi)部一點(diǎn),連接,求出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠C90°,AB10 cm,BC6 cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),以每秒2 cm的速度按CA的路徑運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)出發(fā)2秒時(shí),ABP的面積為 cm2;

2當(dāng)t為何值時(shí),BP恰好平分∠ABC?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)當(dāng)天,小明帶了四個(gè)粽子(除味道不同外,其它均相同),其中兩個(gè)是大棗味的,另外兩個(gè)是火腿味的,準(zhǔn)備按數(shù)量平均分給小紅和小剛兩個(gè)好朋友.

(1)請(qǐng)你用樹(shù)狀圖或列表的方法表示小紅拿到的兩個(gè)粽子的所有可能性;

(2)請(qǐng)你計(jì)算小紅拿到的兩個(gè)粽子剛好是同一味道的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2﹣2x+3x軸交于點(diǎn)A,B,把拋物線與線段AB圍成的圖形記為C1, Cl繞點(diǎn)B中心對(duì)稱(chēng)變換得C2, C2x軸交于另一點(diǎn)C,將C2繞點(diǎn)C中心對(duì)稱(chēng)變換得C3, 連接CC3的頂點(diǎn),則圖中陰影部分的面積為(

A. 32 B. 24 C. 36 D. 48

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的中線,E,F分別是ADAD延長(zhǎng)線上的點(diǎn),且DEDF,連接BF,CE,下列說(shuō)法:①△ABD 和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正確的是(

A. ①② B. ③⑤ C. ①③④ D. ①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,的平分線交于點(diǎn),得;的平分線相交于點(diǎn),得;……;的平分線交于點(diǎn),要使的度數(shù)為整數(shù),則的最大值為(

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:(1)b2﹣4ac>0;(2)abc>0;(3)8a+c>0;(4)6a+3b+c>0,其中正確的結(jié)論的個(gè)數(shù)是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工人師傅用一塊長(zhǎng)為10dm,寬為6dm的矩形鐵皮制作一個(gè)無(wú)蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))

(1)在圖中畫(huà)出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長(zhǎng)方體底面面積為12dm2時(shí),裁掉的正方形邊長(zhǎng)多大?

(2)若要求制作的長(zhǎng)方體的底面長(zhǎng)不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長(zhǎng)多大時(shí),總費(fèi)用最低,最低為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案