如圖,在直角坐標(biāo)系xoy中,⊿ABC關(guān)于直線y=1軸對(duì)稱,已知點(diǎn)A坐標(biāo)是(4,4),則點(diǎn)B的坐標(biāo)是

[  ]
A.

(4,-4)

B.

(-4,2)

C.

(4,-2)

D.

(-2,4)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,⊙M與y軸相切于點(diǎn)C,與x軸交于A(x1,0),B(x2,0)兩點(diǎn),其中x1,x2是方程x2-10x+16=0的兩個(gè)根,且x1<x2,連接MC,過(guò)A、B、C三點(diǎn)的拋物線的頂點(diǎn)為N.
(1)求過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)判斷直線NA與⊙M的位置關(guān)系,并說(shuō)明理由;
(3)一動(dòng)點(diǎn)P從點(diǎn)C出發(fā),以每秒1個(gè)單位長(zhǎng)的速度沿CM向點(diǎn)M運(yùn)動(dòng),同時(shí),一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿射線BA以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)P運(yùn)動(dòng)到M點(diǎn)時(shí),兩動(dòng)點(diǎn)同時(shí)停止運(yùn)動(dòng),當(dāng)時(shí)間t為何值時(shí),以Q、O、C為頂點(diǎn)的三角形與△PCO相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:在直角坐標(biāo)系中放入一邊長(zhǎng)OC為6的矩形紙片ABCO,將紙翻折后,使點(diǎn)B恰好落在x軸上,記為B',折痕為CE,已知tan∠OB′C=
3
4

(1)求出B′點(diǎn)的坐標(biāo);
(2)求折痕CE所在直線的解析式;
(3)作B′G∥AB交CE于G,已知拋物線y=
1
8
x2-
14
3
通過(guò)G點(diǎn),以O(shè)為圓心OG的長(zhǎng)為精英家教網(wǎng)半徑的圓與拋物線是否還有除G點(diǎn)以外的交點(diǎn)?若有,請(qǐng)找出這個(gè)交點(diǎn)坐標(biāo).
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已如:如圖,在直角坐標(biāo)系中,以y軸上的點(diǎn)C為圓心,2為半徑的圓與x軸相切于原點(diǎn)O,AB為⊙C的直徑,PA切⊙O于點(diǎn)A,交x軸的負(fù)半軸于點(diǎn)P,連接PC交OA于點(diǎn)D.
(1)求證:PC⊥OA;
(2)若點(diǎn)P在x軸的負(fù)半軸上運(yùn)動(dòng),原題的其他條件不變,設(shè)點(diǎn)P的坐標(biāo)為(x,0),四邊形
POCA的面積為S,求S與點(diǎn)P的橫坐標(biāo)x之間的函數(shù)關(guān)系式;
(3)在(2)的情況下,分析并判斷是否存在這樣的一點(diǎn)P,使S四邊形POCA=S△AOB,若存在,直接寫出點(diǎn)P的坐標(biāo)(不寫過(guò)程);若不存在,簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:在直角坐標(biāo)系中描出A(-4,-4),B(1,-4),C(2,-1),D(-3,-1)四個(gè)點(diǎn).
(1)順次連接A,B,C,D四個(gè)點(diǎn)組成的圖形是什么圖形?
(2)畫出(1)中圖形分別向上5個(gè)單位向右3個(gè)單位后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,A的坐標(biāo)為(a,0),D的坐標(biāo)為(0,b),且a、b滿足
a+2
+(b-4)2=0

(1)求A、D兩點(diǎn)的坐標(biāo);
(2)以A為直角頂點(diǎn)作等腰直角三角形△ADB,直接寫出B的坐標(biāo);
(3)在(2)的條件下,當(dāng)點(diǎn)B在第四象限時(shí),將△ADB沿直線BD翻折得到△A′DB,點(diǎn)P為線段BD上一動(dòng)點(diǎn)(不與B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,請(qǐng)?zhí)骄浚篜D、PN、BN之間的數(shù)量關(guān)系.
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹