【題目】對于下列結論:
①二次函數(shù),當時,隨的增大而增大.
②關于的方程的解是,(、、均為常數(shù),),則方程的解是,.
③設二次函數(shù),當時,總有,當時,總有,那么的取值范圍是.
其中,正確結論的個數(shù)是( )
A.0個B.1個C.2個D.3個
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC.將△ABC沿AB翻折后得到△ABD.
(1)試說明點D在⊙O上;
(2)在線段AD的延長線上取一點E,使AB2=AC·AE.求證:BE為⊙O的切線;
(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展課外活動,分音樂、體育、美術、制作四個活動項目,隨機抽取部分學生對其選擇參加的活動項目進行調查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖.
請根據(jù)上述統(tǒng)計圖提供的信息,完成下列問題:
(1)這次抽查的樣本容量是 ;
(2)請補全上述條形統(tǒng)計圖,并求出扇形圖中“美術”所占的圓心角度數(shù);
(3)若該校有2000名學生,請你用此樣本估計參加“藝術”類活動項目(“藝術”類活動包括“音樂”和“美術”兩個項目)的學生人數(shù)約為多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一個直角三角形紙片,放置在平面直角坐標系中,點,點,點
(I)過邊上的動點 (點不與點,重合)作交于點,沿著折疊該紙片,點落在射線上的點處.
①如圖,當為中點時,求點的坐標;
②連接,當為直角三角形時,求點坐標:
(Ⅱ)是邊上的動點(點不與點重合),將沿所在的直線折疊,得到,連接,當取得最小值時,求點坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙只捕撈船同時從A港出海捕魚,甲船以每小時15 km的速度沿北偏西60°方向前進,乙船以每小時15 km的速度沿東北方向前進.甲船航行2 h到達C處,此時甲船發(fā)現(xiàn)漁具丟在了乙船上,于是甲船快速(勻速)沿北偏東75°的方向追趕乙船,結果兩船在B處相遇.問:
(1)甲船從C處出發(fā)追趕上乙船用了多少時間?
(2)甲船追趕乙船的速度是每小時多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(﹣3,y1),B(2,y2)均在拋物線y=ax2+bx+c上,點P(m,n)是該拋物線的頂點,若y1>y2≥n,則m的取值范圍是( )
A.﹣3<m<2B.﹣<m<-C.m>﹣D.m>2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=(x﹣m)2的頂點A在x軸正半軸上,交y軸于B點,S△OAB=1.
(1)求拋物線的解析式;
(2)如圖2,P是第一象限內拋物線上對稱軸右側一點,過P的直線l與拋物線有且只有一個公共點,l交拋物線對稱軸于C點,連PB交對稱軸于D點,若∠BAO=∠PCD,求證:AC=2AD;
(3)如圖3,以A為頂點作直角,直角邊分別與拋物線交于M、N兩點,當直角∠MAN繞A點旋轉時,求證:MN始終經過一個定點,并求出該定點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中, 是直線上的一點,連接過點作交直線于點.
當點在線段上時,如圖①,求證:;
當點在直線上移動時,位置如圖②、圖③所示,線段與之間又有怎樣的數(shù)量關系?請直接寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級( 3 )班全體學生 2019 年初中畢業(yè)體育考試的成績統(tǒng)計如下表:
成績 | 35 | 39 | 42 | 43 | 45 | 49 | 50 |
人數(shù) | 3 | 5 | 6 | 6 | 8 | 7 | 5 |
根據(jù)上表中的信息判斷,下列結論中錯誤的是 ( )
A.該班一共有 40 名同學B.該班學生這次考試成績的眾數(shù)是 45 分
C.該班學生這次考試成績的中位數(shù)是 44 分D.該班學生這次考試成績的平均數(shù)是 45 分
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com