【題目】如圖,等邊三角形ABC中,D、E分別是AB、AC的中點(diǎn),延長BC至點(diǎn)F,使CF =BC,連接DE、CD、EF.
(1)求證:四邊形DCFE是平行四邊形;
(2)若等邊三角形ABC的邊長為a,寫出求EF長的思路.
【答案】(1)見解析;(2)見解析.
【解析】
(1)只要證明DE∥CF,DE=CF即可解決問題;
(2)求解思路如下:由四邊形DCFE是平行四邊形,可得EF=DC,只要求出CD即可;
(1)∵D、E分別為AB、AC的中點(diǎn),
∴DE∥BC,DE=BC,
∵CF=BC,
∴DE=CF,
又∵DE∥CF,
∴四邊形DCFE是平行四邊形.
(2)求解思路如下:
①由四邊形DCFE是平行四邊形,可得EF=DC.
②由△ABC是等邊三角形,D為AB的中點(diǎn),
可得BD=AB=a,CD⊥AB.
③在Rt△BCD中,BC=a,依據(jù)勾股定理DC長可求,即EF長可求.
解答如下:∵DE∥FC,DE=FC
∴四邊形DEFC是平行四邊形,
∴DC=EF,
∵D為AB的中點(diǎn),等邊△ABC的邊長是a,
∴AD=BD=0.5a,CD⊥AB,BC=a,
在Rt△BCD中,
∴EF==CD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊中,點(diǎn)、分別在、上,,連、.
(1)求證:;
(2)如圖2,延長至點(diǎn),使得,連,試判斷的形狀,并說明理由;
(3)在(2)的條件下,連,.若,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·西寧)西寧中心廣場有各種音樂噴泉,其中一個噴水管的最大高度為3米,此時距噴水管的水平距離為米,在如圖3所示的坐標(biāo)系中,這個噴泉的函數(shù)關(guān)系式是
A. y=-(x-)x2+3 B. y=-3(x+)x2+3
C. y=-12(x-)x2+3 D. y=-12(x+)x2+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,點(diǎn)E在△ABC外一點(diǎn),CE⊥AE于點(diǎn)E,CE=BC.
(1)作出△ABC的角平分線AD.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡.)
(2)求證:∠ACE=∠B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸從左至右交于,兩點(diǎn),與軸交于點(diǎn).
若拋物線過點(diǎn),求拋物線的解析式;
在第二象限內(nèi)的拋物線上是否存在點(diǎn),使得以、、三點(diǎn)為頂點(diǎn)的三角形與相似?若存在,求的值;若不存在,請說明理由.
如圖,在的條件下,點(diǎn)的坐標(biāo)為,點(diǎn)是拋物線上的點(diǎn),在軸上,從左至右有、兩點(diǎn),且,問在軸上移動到何處時,四邊形的周長最小?請直接寫出符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某港口有一燈塔,燈塔的正東有、兩燈塔,以為直徑的半圓區(qū)域內(nèi)有若干暗礁,海里,一船在處測得燈塔、分別在船的
南偏西和南偏西方向,船沿方向行駛海里恰好處在燈塔的正北方向處.
求的長(精確到海里);
若船繼續(xù)沿方向朝行駛,是否有觸礁的危險?
(參考數(shù)值:,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求(1)求直線AE的函數(shù)表達(dá)式;(2)求D點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知二次函數(shù)的圖象與一次函數(shù)的圖象相交于,且,若,,則的值應(yīng)滿足( )
A. -3<x1<-2 B. -2<x1<-1 C. -1<x1<0 D. 0<x1<1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在邊AC上,下列條件中,能判斷△BDC與△ABC相似的是 ( )
A. AB·CB=CA·CD B. AB·CD=BD·BC C. BC2=AC·DC D. BD2=CD·DA
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com