如圖,對稱軸為的拋物線軸相交于點

(1).求拋物線的解析式,并求出頂點的坐標(biāo)

(2).連結(jié)AB,把AB所在的直線平移,使它經(jīng)過原點O,得到直線.點P是上一動點.設(shè)以點A、B、O、P為頂點的四邊形面積為S,點P的橫坐標(biāo)為,當(dāng)0<S≤18時,求的取值范圍

(3).在(2)的條件下,當(dāng)取最大值時,拋物線上是否存在點,使△OP為直角三角形且OP為直角邊.若存在,直接寫出點的坐標(biāo);若不存在,說明理由.


(1).(3,3)

(2).-3≤<0或0<≤3.

(3).存在,點坐標(biāo)為(3,3)或(6,0)或(-3,-9)

(說明:可用對稱軸為,求值,用頂點式求頂點A坐標(biāo).)

(2)設(shè)直線AB解析式為y=kx+b.

∵A(3,3),B(6,0),

   解得,   ∴.

∵直線∥AB且過點O,

∴直線解析式為.

∵點上一動點且橫坐標(biāo)為,

∴點坐標(biāo)為().

作PM⊥軸于M,設(shè)對稱軸與軸交點為N.

=-3+9.

∵0<S≤18,

∴0<-3+9≤18,

∴-3≤<3.

<0,

∴-3≤<0.6分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


 函數(shù)的圖象如圖,那么關(guān)于x的分式方程的解是【    】

A.x=1   B.x=2   C.x=3   D.x=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AD于F,△OBD是等邊三角形。

(1)求證:OF∥BD;

(2)求證:△AFO≌△DEB;

(3)若BE=4cm,求陰影部分的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


將矩形OABC置于平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,4),點C的坐標(biāo)為(m,0)(m>0),點D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標(biāo)平面內(nèi),設(shè)點B的對應(yīng)點為點E,當(dāng)△ADE是等腰直角三角形時,m=         ,點E的坐標(biāo)為          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖①,在平面直角坐標(biāo)系中,已知點A(2,0),點B(0,4),點E(0,1),如圖②,將△AEO沿x軸向左平移得到△A′E′O′,連接A′B、BE′。

(1)設(shè)AA′=m(m >0),試用含m的式子表示,并求出使取得最小值時點E′的坐標(biāo);

(2)當(dāng)A′B+BE′取得最小值時,求點E′的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖1,把邊長分別是為4和2的兩個正方形紙片OABC和OD′E′F′疊放在一起.

(1)操作1:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉(zhuǎn)45°得到正方形ODEF,如圖2,連接AD、CF,線段AD與CF之間有怎樣的數(shù)量關(guān)系?試證明你的結(jié)論;

(2)操作2,如圖2,將正方形ODEF沿著射線DB以每秒1個單位的速度平移,平移后的正方形ODEF設(shè)為正方形PQMN,如圖3,設(shè)正方形PQMN移動的時間為x秒,正方形PQMN與正方形OABC的重疊部分面積為y,直接寫出y與x之間的函數(shù)解析式;

(3)操作3:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉(zhuǎn)90°得到正方形OHKL,如圖4,求△ACK的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,梯形ABCD中,AB∥DC,DE⊥AB,CB⊥AB,且AE = EB = 5,DE = 12,動點P從點A出發(fā),沿折線AD-DC-CB以每秒1個單位長的速度運動到點B停止。設(shè)運動時間為t秒,y = SEPB,則y與t的函數(shù)圖象大致是【    】

  A.     B.     C.     D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某數(shù)學(xué)興趣小組對線段上的動點問題進行探究,已知AB=8.

問題思考:

如圖1,點P為線段AB上的一個動點,分別以AP、BP為邊在同側(cè)作正方形APDC與正方形PBFE.

(1)在點P運動時,這兩個正方形面積之和是定值嗎?如果時求出;若不是,求出這兩個正方形面積之和的最小值.

(2)分別連接AD、DF、AF,AF交DP于點A,當(dāng)點P運動時,在△APK、△ADK、△DFK中,是否存在兩個面積始終相等的三角形?請說明理由.

問題拓展:

(3)如圖2,以AB為邊作正方形ABCD,動點P、Q在正方形ABCD的邊上運動,且PQ=8.若點P從點A出發(fā),沿A→B→C→D的線路,向D點運動,求點P從A到D的運動過程中,PQ的中點O所經(jīng)過的路徑的長。

 (4)如圖(3),在“問題思考”中,若點M、N是線段AB上的兩點,且AM=BM=1,點G、H分別是邊CD、EF的中點.請直接寫出點P從M到N的運動過程中,GH的中點O所經(jīng)過的路徑的長及OM+OB的最小值.

    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點.

(1)求AD的長及拋物線的解析式;

(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當(dāng)點P運動到點C時,兩點同時停止運動.設(shè)運動時間為t秒,當(dāng)t為何值時,以P、Q、C為頂點的三角形與△ADE相似?

查看答案和解析>>

同步練習(xí)冊答案