【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是拋物線對稱軸上的一個動點,當(dāng)△ACM的周長最小時,求點M的坐標(biāo).
【答案】(1)y=x2﹣x﹣2,頂點D的坐標(biāo)為(,﹣);(2)△ABC是直角三角形,理由詳見解析;(3)M(,﹣).
【解析】試題分析:(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)配方法,可得頂點坐標(biāo);
(2)根據(jù)勾股定理的逆定理,可得答案;
(3)根據(jù)軸對稱的性質(zhì),兩點之間線段最短,可得M點是對稱軸與BC的交點,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.
試題解析:(1)∵點A(1,0)在拋物線上,
∴
解得
∴拋物線的解析式為
∵
∴頂點D的坐標(biāo)為
(2)△ABC是直角三角形,理由如下:
當(dāng)x=0時,y=2,
∴C(0,2),則OC=2.
當(dāng)y=0時,
∴ 則B(4,0),
∴OA=1,OB=4,
∴AB=5.
∴
∴△ABC是直角三角形;
(3)由題意A.B兩點關(guān)于對稱軸對稱,故直線BC與對稱軸的交點即為點M.
由B(4,0),C(0,2)
設(shè)直線BC:y=kx2
4k2=0,
所以直線
當(dāng)時,
所以
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,OM和ON分別平分∠AOC和∠BOC.
(1)如圖:若C為∠AOB內(nèi)一點,探究∠MON與∠AOB的數(shù)量關(guān)系;
(2)若C為∠AOB外一點,且C不在OA、OB的反向延長線上,請你畫出圖形,并探究∠MON與∠AOB的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,“中小學(xué)生每天在校體育鍛煉時間不小于1小時”,某地區(qū)就“每天在校體育鍛煉時間”的問題隨機(jī)調(diào)查了若干名中學(xué)生,根據(jù)調(diào)查結(jié)果制作如下統(tǒng)計圖(不完整).其中分組情況:A組:時間小于0.5小時;B組:時間大于等于0.5小時且小于1小時;C組:時間大于等于1小時且小于1.5小時;D組:時間大于等于1.5小時.
根據(jù)以上信息,回答下列問題:
(1)A組的人數(shù)是 人,并補(bǔ)全條形統(tǒng)計圖;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在組 ;
(3)根據(jù)統(tǒng)計數(shù)據(jù)估計該地區(qū)25 000名中學(xué)生中,達(dá)到國家規(guī)定的每天在校體育鍛煉時間的人數(shù)約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形中,,.點從點出發(fā),沿勻速運動;點從點出發(fā),沿的路徑勻速運動.兩點同時出發(fā),在點處首次相遇后,點的運動速度每秒提高了,并沿的路徑勻速運動;點保持速度不變,繼續(xù)沿原路徑勻速運動,某一時刻兩點在長方形某一邊上的點處第二次相遇.若點的速度為.
備用圖
(1)點原來的速度為___________.
(2),兩點在點處首次相遇后,再經(jīng)過___________秒后第二次在點相遇.
(3)點在___________邊上.此時___________.
(4)在點相遇后,兩點沿原來的方向繼續(xù)前進(jìn).又經(jīng)歷了次相遇后停止運動,請問此時兩點停在長方形邊上的什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一種單價為40元的書包,如果以單價50元出售,那么每月可售出30個,根據(jù)銷售經(jīng)驗,售價每提高5元,銷售量相應(yīng)減少1個.
(1)請寫出總的銷售利潤y元與銷售單價提高x元之間的函數(shù)關(guān)系式;
(2)如果你是經(jīng)理,為使每月的銷售利潤最大,那么你確定這種書包的單價為多少元?此時,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知圖甲是一個長為2m、寬為2n的長方形,沿圖甲中虛線用剪刀均勻分成四小塊長方形,然后按圖乙的形狀拼成一個正方形.
(1)圖乙中陰影部分正方形的邊長為________(用含字母m,n的整式表示).
(2)請用兩種不同的方法求圖乙中陰影部分的面積.
方法一:________________;
方法二:________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)南市地鐵1號線,北起方特站,南至工研院站,共設(shè)11個車站,2019年4月1日正式開通運營,標(biāo)志著濟(jì)南市正式邁進(jìn)“地鐵時代”.11個站點如圖所示:
某天,王紅從玉符河站開始乘坐地鐵,在地鐵各站點做志配者服務(wù),到A站下車時,本次志照者服務(wù)活動結(jié)束,約定向工研院站方向為正,當(dāng)天的乘車記錄如下(單位;站):+3、-2、-6、+7、-5、+3、+6.
(1)請通過計算說明A站是哪一站?
(2)若相鄰兩站之間的距離為3千米,求這次王紅志照服務(wù)期間乘坐地鐵行進(jìn)的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點.解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強(qiáng)相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強(qiáng)相似點,試探究AB和BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交點為A(-3,0),與y軸交點為B,且與正比例函數(shù)的圖象的交于點C(m,4).
(1)求m的值及一次函數(shù)y=kx+b的表達(dá)式;
(2)若點P是y軸上一點,且△BPC的面積為6,請直接寫出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com