【題目】如圖,已知,的直徑,過點作弦垂直于直徑,點恰好為的中點,連接,

1)求證:;

2)若,求的半徑;

3)在(2)的條件下,求陰影部分的面積.

【答案】1)證明見解析;(2的半徑為2;(3

【解析】

1)連接BD,根據(jù)圓周角定理得出∠CBD=AEB=90°,∠A=C,進而求得∠ABE=CDB,得出,即可證得結論;
2)根據(jù)垂徑定理和圓周角定理易求得∠A=ABE,得出∠A=30°,解直角三角形求得AB,即可求得⊙O的半徑;
3)根據(jù)S=S扇形-SEOB求得即可.

(1)證明:連接

,的直徑,

,

∵點恰好為的中點,

,

,

,

,

2)解:∵過點作弦垂直于直徑,

,

,

,

中,,

的半徑為2

3)連接,

,

是等邊三角形,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區(qū)居民在線參與《新型冠狀病毒防治與預防知識》作答(滿分100分),社區(qū)管理員隨機從甲、乙兩個小區(qū)各抽取20名人員的答卷成績,并對他們的成績(單位:分)進行數(shù)據(jù)統(tǒng)計、數(shù)據(jù)分析.

85

80

95

85

90

95

100

65

75

85

90

90

70

100

90

80

80

90

98

75

80

60

80

85

95

65

90

85

100

80

95

75

80

80

70

100

95

75

90

90

1分數(shù)統(tǒng)計表

成績

小區(qū)

60≤x≤70

70x≤80

80x≤90

90x≤100

2

5

a

b

3

7

5

5

2:頻數(shù)分布表

統(tǒng)計量

小區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

85.75

87.5

c

83.5

d

80

3:統(tǒng)計量

1)填空:a=   b=   ,c=   d=   ;

2)甲小區(qū)共有800人參與答卷,請估計甲小區(qū)成績大于90分的人數(shù);

3)對于此次抽樣調查中測試成績?yōu)?/span>60≤x≤70的居民,社區(qū)鼓勵他們重新學習,然后從中隨機抽取兩名居民進行測試,求剛好抽到一個是甲小區(qū)居民,另一個是乙小區(qū)居民的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生的安全意識情況,在全校范圍內隨機抽取部分學生進行問卷調查,根據(jù)調查結果,把學生的安全意識分成淡薄”、“一般”、“較強”、“很強四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)這次調查一共抽取了 名學生,其中安全意識為很強的學生占被調查學生總數(shù)的百分比是

(2)請將條形統(tǒng)計圖補充完整;

(3)該校有1800名學生,現(xiàn)要對安全意識為淡薄”、“一般的學生強化安全教育,根據(jù)調查結果,估計全校需要強化安全教育的學生約有 名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在3×3正方形方格中,有3個小正方形涂成了黑色,所形成的圖案如圖所示,圖中每塊小正方形除顏色外完全相同.

1)一個小球在這個正方形方格上自由滾動,那么小球停在黑色小正方形的概率是多少?

2)現(xiàn)將方格內空白的小正方形(A、BC、D、E、F)中任取2個涂黑,得到新圖案,請用列表或畫樹狀圖的方法求新圖案是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線yax2+bx+ca0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間,則下列結論:4a2b+c0;3a+b0;b24acn);一元二次方程ax2+bx+cn1有兩個互異實根.其中正確結論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰△ABC中,ADBC交直線BC于點D,若AD=BC,則△ABC的頂角的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于兩點,與軸交于點連接

1)求反比例函數(shù)的解析式;

2)若點軸上,且,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了滿足學生的興趣愛好,學校決定在七年級開設興趣班,興趣班設有四類:圍棋班;象棋班;書法班;攝影班.為了便于分班,年級組隨機抽查了部分學生的選課意向(每人選報一類),并繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下問題:

1)求扇形統(tǒng)計圖中、的值,并補全條形統(tǒng)計圖;

2)已知該校七年級有600名學生,學校計劃開設三個“圍棋班”,每班要求不超過40人,實行隨機分班.

①學校的開班計劃是否能滿足選擇“圍棋班”的學生意愿,說明理由;

②展鵬、展飛是一對雙胞胎,他們都選擇了“圍棋班”,并且希望能分到同一個班,用樹狀圖或列表法求他們的希望得以實現(xiàn)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,經(jīng)過、兩點的拋物線軸的另一交點

1)求該拋物線的函數(shù)表達式;

2是該拋物線上的動點,過點軸于點,交于點,軸于點,設點的橫坐標為

①求出四邊形的周長的函數(shù)表達式,并求的最大值;

②當為何值時,四邊形是菱形;

③是否存在點,使得以、為頂點的三角形與相似?若存在,請求出滿足條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案