【題目】在△ABC和△ADE中,BA=BC,DA=DE,且∠ABC=∠ADE,點(diǎn)E在△ABC的內(nèi)部,連接EC,EB和ED,設(shè)EC=kBD(k≠0).
(1)當(dāng)∠ABC=∠ADE=60°時(shí),如圖1,請(qǐng)求出k值,并給予證明;
(2)當(dāng)∠ABC=∠ADE=90°時(shí):
①如圖2,(1)中的k值是否發(fā)生變化,如無變化,請(qǐng)給予證明;如有變化,請(qǐng)求出k值并說明理由;
②如圖3,當(dāng)D,E,C三點(diǎn)共線,且E為DC中點(diǎn)時(shí),請(qǐng)求出tan∠EAC的值.
【答案】(1)k=1,理由見解析;(2)①k值發(fā)生變化,k=,理由見解析;②tan∠EAC=.
【解析】
(1)根據(jù)題意得到△ABC和△ADE都是等邊三角形,證明△DAB≌△EAC,根據(jù)全等三角形的性質(zhì)解答;
(2)①根據(jù)等腰直角三角形的性質(zhì)、相似三角形的性質(zhì)計(jì)算;
②作EF⊥AC于F,設(shè)AD=DE=a,證明△CFE∽△CAD,根據(jù)相似三角形的性質(zhì)求出EF,根據(jù)勾股定理求出AF,根據(jù)正切的定義計(jì)算即可.
(1)k=1,
理由如下:如圖1,∵∠ABC=∠ADE=60°,BA=BC,DA=DE,
∴△ABC和△ADE都是等邊三角形,
∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC(SAS)
∴EC=DB,即k=1;
(2)①k值發(fā)生變化,k=,
∵∠ABC=∠ADE=90°,BA=BC,DA=DE,
∴△ABC和△ADE都是等腰直角三角形,
∴,,∠DAE=∠BAC=45°,
∴,∠DAB=∠EAC,
∴△EAC∽△DAB,
∴,即EC=BD,
∴k=;
②作EF⊥AC于F,
設(shè)AD=DE=a,則AE=a,
∵點(diǎn)E為DC中點(diǎn),
∴CD=2a,
由勾股定理得,AC=,
∵∠CFE=∠CDA=90°,∠FCE=∠DCA,
∴△CFE∽△CAD,
∴,即,
解得,EF=,
∴AF=,
則tan∠EAC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為6的正方形,點(diǎn)E在邊AB上,BE=4,過點(diǎn)E作EF∥BC,分別交BD,CD于點(diǎn)G,F兩點(diǎn),若M,N分別是DG,CE的中點(diǎn),則MN的長(zhǎng)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,在△ABC中,∠ACB=90°,BC=AC,點(diǎn)D在AB上,DE⊥AB交BC于E,點(diǎn)F是AE的中點(diǎn)
(1)寫出線段FD與線段FC的關(guān)系并證明;
(2)如圖2,將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段FD與線段FC的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3)將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一周,如果BC=4,BE=2,直接寫出線段BF的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中的小方格都是邊長(zhǎng)為1的正方形,△ABC的頂點(diǎn)和O點(diǎn)都在正方形的頂點(diǎn)上.
(1)以點(diǎn)O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;
(2)△A′B′C′繞點(diǎn)B′順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A″B′C″,并求邊A′B′在旋轉(zhuǎn)過程中掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,小軍有一張Rt△ABC紙片,其中∠A=30°,AB=12cm.他先將該紙片沿BD折疊,使點(diǎn)C剛好落在斜邊AB上的一點(diǎn)C′處.然后沿DC′剪開得到雙層△BDC′(如圖2).小軍想把雙層△BDC′沿某直線再剪開一次,使展開后的兩個(gè)平面圖形中其中一個(gè)是平行四邊形,則他能得到的平行四邊形的最大面積可為____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)將今年黃石市民最關(guān)注的熱點(diǎn)話題分為消費(fèi)、教育、環(huán)保、反腐及其它共五類.根據(jù)最近一次隨機(jī)調(diào)查的相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下:
根據(jù)以上信息解答下列問題:
(1)本次共調(diào)查 人,請(qǐng)?jiān)?/span>圖上補(bǔ)全條形統(tǒng)計(jì)圖并標(biāo)出相應(yīng)數(shù)據(jù);
(2)若黃石市約有260萬人口,請(qǐng)你估計(jì)最關(guān)注教育問題的人數(shù)約為多少萬人?
(3)隨著經(jīng)濟(jì)的發(fā)展,人們?cè)絹碓街匾暯逃,預(yù)計(jì)關(guān)注教育的人數(shù)在每年以10%的增長(zhǎng)率在增長(zhǎng),預(yù)計(jì)兩年后我市關(guān)注教育問題的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動(dòng)點(diǎn)P以2cm/s的速度從B點(diǎn)出發(fā)沿著B→A的方向運(yùn)動(dòng),點(diǎn)Q以1cm/s的速度從A點(diǎn)出發(fā)沿著A→C的方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)△APQ是直角三角形時(shí),t的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=kx的圖象與反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(2,2).
(1)分別求這兩個(gè)函數(shù)的表達(dá)式;
(2)將直線OA向上平移3個(gè)單位長(zhǎng)度后與y軸交于點(diǎn)B,與反比例函數(shù)圖象在第一象限內(nèi)的交點(diǎn)為C,連接AB,AC,求點(diǎn)C的坐標(biāo)及△ABC的面積;
(3)在第一象限內(nèi),直接寫出反比例函數(shù)的值大于直線BC的值時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C﹦90°,AC﹦6,∠B﹦30°,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)P作PD∥BC,交A于點(diǎn)D,連接PQ.設(shè)運(yùn)動(dòng)時(shí)間為t秒(t ≥0).
(1)直接用含t的代數(shù)式分別表示QB、PD、BD的長(zhǎng)度:QB﹦ ;PD﹦ ;BD﹦ .
(2)當(dāng)t取何值時(shí),若四邊形PDBQ是平行四邊形?
(3)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,請(qǐng)說明理由.并探究如何改變點(diǎn)Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻成為菱形,求點(diǎn)Q的速度;
(4)如圖2,以C為原點(diǎn),以AC所在的直線為x軸,建立平面直角坐標(biāo)系.在整個(gè)運(yùn)動(dòng)過程中,線段PQ的中點(diǎn)M(x,y)會(huì)在一個(gè)固定的函數(shù)圖像上運(yùn)動(dòng).則
①該函數(shù)解析式為 ;②自變量x的取值范圍是 ;③點(diǎn)M所經(jīng)過的路徑長(zhǎng)等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com