【題目】如圖,是由四條曲線圍成的廣告標(biāo)志,建立平面直角坐標(biāo)系,雙曲線對(duì)應(yīng)的函數(shù)表達(dá)式分別為y=-,y=.現(xiàn)用四根鋼條固定這四條曲線,這種鋼條加工成長(zhǎng)方形產(chǎn)品按面積計(jì)算,每單位面積25元,請(qǐng)你幫助工人師傅計(jì)算一下,所需鋼條一共花多少錢?

【答案】600

【解析】試題分析:由題意可知四邊形ABCD是矩形,根據(jù)反比例函數(shù)圖象的對(duì)稱性可得,兩條坐標(biāo)軸將矩形ABCD分成四個(gè)全等的小矩形,由圖可知點(diǎn)Ay上,由此可求得點(diǎn)矩形AEOH的面積,進(jìn)而求得矩形ABCD的面積,再根據(jù)每單位面積25元,結(jié)合矩形ABCD的面積,即可求得所需鋼條一共要花的錢數(shù).

試題解析:由反比例函數(shù)圖象的對(duì)稱性可知,兩條坐標(biāo)軸將長(zhǎng)方形ABCD分成四個(gè)全等的小長(zhǎng)方形.

因?yàn)辄c(diǎn)Ay的圖象上的一點(diǎn),

所以S長(zhǎng)方形AEOH6.

所以S長(zhǎng)方形ABCD4×624.

所以總費(fèi)用為25×24600()

答:所需鋼條一共花600

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BD⊥AC,AB=6,AC=5 ,∠A=30°.
①求BD和AD的長(zhǎng);
②求tanC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y=-x與函數(shù)y=-的圖象相交于A,B兩點(diǎn),過(guò)A,B兩點(diǎn)分別作y軸的垂線,垂足分別為點(diǎn)C,D,求四邊形ACBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.

(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動(dòng)點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB=6.

(1)求函數(shù)y=和y=kx+b的解析式;

(2)已知直線AB與x軸相交于點(diǎn)C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點(diǎn)P,使得S△POC=9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)y=與函數(shù)y=在第一象限內(nèi)的圖象,點(diǎn)P是y=的圖象上一動(dòng)點(diǎn),PAx軸于點(diǎn)A,交y=的圖象于點(diǎn)C,PBy軸于點(diǎn)B,交y=的圖象于點(diǎn)D.

(1)求證:D是BP的中點(diǎn);

(2)求四邊形ODPC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一個(gè)棱長(zhǎng)為的正方體的每個(gè)面等分成個(gè)小正方形,然后沿每個(gè)面正中心的一個(gè)正方形向里挖空(相當(dāng)于挖去個(gè)小正方體),所得到的幾何體的表面積是(

A. 78 B. 72 C. 54 D. 48

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】結(jié)合數(shù)軸與絕對(duì)值的知識(shí)回答下列問(wèn)題:

(1)探究:

①數(shù)軸上表示52的兩點(diǎn)之間的距離是多少

②數(shù)軸上表示﹣2和﹣6的兩點(diǎn)之間的距離是多少

③數(shù)軸上表示﹣43的兩點(diǎn)之間的距離是多少

(2)歸納:

一般的,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于|m﹣n|

(3)應(yīng)用:

①如果表示數(shù)a3的兩點(diǎn)之間的距離是7,則可記為:|a﹣3|=7,求a的值

②若數(shù)軸上表示數(shù)a的點(diǎn)位于﹣43之間,求|a+4|+|a﹣3|的值.

③當(dāng)a取何值時(shí),|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?請(qǐng)說(shuō)明理由.

(4)拓展:某一直線沿街有2014戶居民(相鄰兩戶居民間隔相同):A1,A2,A3,A4,A5,…A2014,某餐飲公司想為這2014戶居民提供早餐,決定在路旁建立一個(gè)快餐店P(guān),點(diǎn)P選在什么線段上,才能使這2014戶居民到點(diǎn)P的距離總和最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC,B,C的平分線交于點(diǎn)O,D是外角與內(nèi)角平分線交點(diǎn),E是外角平分線交點(diǎn),若∠BOC=120°,則∠D=( )

A. 15° B. 20° C. 25° D. 30°

查看答案和解析>>

同步練習(xí)冊(cè)答案