(2012•泰順縣模擬)如圖,在△ABC中,D為BC上的一點(diǎn),E為AD上的一點(diǎn),BE的延長線交AC于點(diǎn)F,已知
BD
BC
=
1
m
AE
AD
=
1
n
,則
AF
AC
的值是
1
mn-m+1
1
mn-m+1
分析:過點(diǎn)D作DG∥AC交BF于點(diǎn)G,用平行線分線段成比例定理以及比例的性質(zhì)進(jìn)行變形即可得到答案.
解答:解:過點(diǎn)D作DG∥AC交BF于點(diǎn)G.
DG
CF
=
BD
BC
=
1
m
,
GD
AF
=
DE
AE
=n-1,
AF
CF
=
1
m(n-1)
,
AF
AC
=
1
mn-m+1

故答案是:
1
mn-m+1
點(diǎn)評(píng):此題主要考查平行線分線段成比例定理的理解及運(yùn)用.注意,平行線分線段成比例定理,一定要找準(zhǔn)對(duì)應(yīng)關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰順縣模擬)有4張全新的撲克牌,其中黑桃、紅桃各2張,它們的背面都一樣,將它們洗勻后,背面朝上放到桌面上,從中任意摸出2張牌,摸出的花色不一樣的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰順縣模擬)已知:(2x-1)9=a0+a1x+a2x2+…+a8x8+a9x9,則(a0+a2+a4+a6+a8)2-(a1+a3+a5+a7+a9)2的值為
-39
-39

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰順縣模擬)x為任何實(shí)數(shù),則
x2+1
+
(x-3)2+9
的最小值是
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰順縣模擬)為獎(jiǎng)勵(lì)期中考試中成績優(yōu)秀的同學(xué),九(1)班花62元錢購買了單價(jià)分別為9元、5元的A、B兩種型號(hào)的黑色簽字筆作為獎(jiǎng)品,則共買了
10
10
支簽字筆.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰順縣模擬)直角梯形ABCD中,AD∥BC,AB=AD=3,邊BC,AB分別在x軸和y軸上,已知點(diǎn)C的坐標(biāo)分別為(4,0).動(dòng)點(diǎn)P從B點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿BC方向作勻速直線運(yùn)動(dòng),同時(shí)點(diǎn)Q從D點(diǎn)出發(fā),以與P點(diǎn)相同的速度沿DA方向運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t,
(1)求線段CD的長.
(2)連接PQ交直線AC于點(diǎn)E,當(dāng)AE:EC=1:2時(shí),求t的值,并求出此時(shí)△PEC的面積.
(3)過Q點(diǎn)作垂直于AD的射線交AC于點(diǎn)M,交BC于點(diǎn)N,連接PM,
①是否存在某一時(shí)刻,使以M、P、C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,求出此時(shí)t的值;若不存在,請說明理由;
②當(dāng)t=
1
1
時(shí),點(diǎn)P、M、D在同一直線上.(直接寫出)

查看答案和解析>>

同步練習(xí)冊答案