【題目】碼頭工人往一艘輪船上裝載貨物,裝完貨物所需時間與裝載速度之間的函數(shù)關(guān)系如圖.

1)這批貨物的質(zhì)量是多少?并求出之間的函數(shù)關(guān)系式;

2)輪船到達目的地后開始卸貨,如果以5t/min的速度卸貨,那么需要多少小時才能卸完貨?

【答案】1;(2)至少需要小時才能卸完貨.

【解析】

1)根據(jù)題意和圖象可知所需的時間y(分鐘)與裝載速度x(噸/分鐘)之間滿足反比例函數(shù)關(guān)系y=,把點(2,200)代入即可求得k=400,即貨物的質(zhì)量;進而可得yx的關(guān)系式;(2)把x=5代入求出y值即可得答案.

1)∵代表裝載速度,代表裝完貨物所需時間,

∴貨物的質(zhì)量為,

把(2,200)代入得貨物的質(zhì)量;

;

∴這批貨物的質(zhì)量是400t,之間的函數(shù)關(guān)系式為:.

2)當時,,

:至少需要小時才能卸完貨.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅星期天從家里出發(fā)騎車去舅舅家做客,當她騎了一段路時,想起要買個禮物送給表弟,于是又折回到剛經(jīng)過的一家商店,買好禮物后又繼續(xù)騎車去舅舅家,以下是她本次去舅舅家所用的時間與路程的關(guān)系式示意圖.根據(jù)圖中提供的信息回答下列問題:

(1)小紅家到舅舅家的路程是______米,小紅在商店停留了______分鐘;

(2)在整個去舅舅家的途中哪個時間段小紅騎車速度最快,最快的速度是多少米/

(3)本次去舅舅家的行程中,小紅一共行駛了多少米?一共用了多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,上的中線,的垂直平分線于點,連接并延長交于點,,垂足為.

1)求證:

2)若,,求的長;

3)如圖,在中,,,上的一點,且,若,請你直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列不等式(組),并把解集在數(shù)軸上表示出來

13x522+3x

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某筆直路段MN內(nèi)小車行駛的最高限速60千米/小時.交通部門為了檢測車輛是否在此路段超速行駛,在公路MN旁設(shè)立了觀測點C,已知∠CAN=45°,∠CBN=60°,BC=120.

(1)求測速點C到該公路的距離;

(2)若測得一小車從A點到達點B行駛了3秒,請通過計算判斷此車是否超速.(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線上繞其右下角的頂點B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉(zhuǎn)90°至圖②位置,...,以此類推,這樣連續(xù)旋轉(zhuǎn)2018次后,頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種泰山旅游紀念品,4月份的營業(yè)額為2000元,為擴大銷售量,5月份該商店對這種紀念品打9折銷售,結(jié)果銷售量增加20件,營業(yè)額增加700元.

(1)求該種紀念品4月份的銷售價格;

(2)若4月份銷售這種紀念品獲利800元,5月份銷售這種紀念品獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC中,BC6,D、E分別在BCAC上,且DEAC,MNBDE的中位線.將線段DEBD2處開始向AC平移,當點D與點C重合時停止運動,則在運動過程中線段MN所掃過的區(qū)域面積為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,O是直線AB上一點,OD是∠AOC的平分線,∠COD與∠COE互余

求證:∠AOE與∠COE互補.

請將下面的證明過程補充完整:

證明:∵O是直線AB上一點

∴∠AOB=180°

∵∠COD與∠COE互余

∴∠COD+COE=90°

∴∠AOD+BOE=_________°

OD是∠AOC的平分線

∴∠AOD=________(理由:_______________

∴∠BOE=COE(理由:________________

∵∠AOE+BOE=180°

∴∠AOE+COE=180°

∴∠AOE與∠COE互補

查看答案和解析>>

同步練習(xí)冊答案