【題目】解方程:

1)(x522x5

22x2+3x10

【答案】1x5x7;(2x1=x2=

【解析】

1)此方程適合因式分解法,將方程右邊整體移項(xiàng)到左邊,利用提取公因式法將左邊因式分解后,令每個(gè)因式等于0即可求解;

2)根據(jù)原方程確定系數(shù)a,b,c的值,先求出b2-4ac的值,判斷大于0,然后代入求根公式中求解.

1)∵(x522x5),

∴(x52-2x5=0,

∴(x5)(x52)=0,

∴(x5)(x7)=0,

∴(x5)(x7)=0,

x-5=0x-7=0,

x=5x=7.

2)∵2x2+3x10

a2,b3,c=﹣1,

∴△=9+817>0,

∴x,

x1=x2=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D為O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且CDA=CBD.

(1)判斷直線CD和O的位置關(guān)系,并說明理由.

(2)過點(diǎn)B作O的切線BE交直線CD于點(diǎn)E,若AC=2,O的半徑是3,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC和△CDE是以點(diǎn)C為公共頂點(diǎn)的兩個(gè)三角形.

1)如圖1,當(dāng)ABAC,CDCE,∠BAC=∠DCE90°時(shí),連接BD,取BD的中點(diǎn)M,連接AM.探究AM、BE之間的數(shù)量關(guān)系,并證明你的結(jié)論;

2)如圖2,當(dāng)ABAC,∠BAC120°,∠CDE60°,∠DCE90°時(shí),連接BD,取BD的中點(diǎn)M,連接AM.探究AM、BE之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)利用寒假30天時(shí)間販賣草莓,了解到某品種草莓成本為10/千克,在第天的銷售量與銷售單價(jià)如下(每天內(nèi)單價(jià)和銷售量保持一致):

銷售量(千克)

銷售單價(jià)(元/千克)

當(dāng)時(shí),

當(dāng)時(shí),

設(shè)第天的利潤元.

1)請計(jì)算第幾天該品種草莓的銷售單價(jià)為25/千克?

2)這30天中,該同學(xué)第幾天獲得的利潤最大?最大利潤是多少?注:利潤=(售價(jià)-成本)×銷售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與函數(shù)的圖象相交于點(diǎn)A,并與軸交于點(diǎn)C,SAOC=15.點(diǎn)D是線段AC上一點(diǎn),CDAC=23

1)求的值;

2)求點(diǎn)D的坐標(biāo);

3)根據(jù)圖象,直接寫出當(dāng)時(shí)不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,于點(diǎn),點(diǎn),,,分別為邊,,的中點(diǎn),順次連接,,,,則四邊形______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對角線BD上一點(diǎn),連接CP并延長,交ADE,交BA的延長線于點(diǎn)F.

1)求證:.

2)如果,求線段PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:y=kx+b 經(jīng)過點(diǎn)A(﹣,0)和點(diǎn)B(2,5)

(1)求直線l1y軸的交點(diǎn)坐標(biāo);

(2)若點(diǎn)C(a,a+2)與點(diǎn)D在直線l1上,過點(diǎn)D的直線l2x軸正半軸交于點(diǎn) E,當(dāng)AC=CD=CE 時(shí),求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為

1)求袋子中白球的個(gè)數(shù);(請通過列式或列方程解答)

2)隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)

查看答案和解析>>

同步練習(xí)冊答案