【題目】觀察下列兩個數(shù)的積(這兩個數(shù)的十位上的數(shù)相同,個位上的數(shù)的和等于),你發(fā)現(xiàn)結(jié)果有什么規(guī)律?
;
;
;
;
(1)設(shè)這兩個數(shù)的十位數(shù)字為,個位數(shù)字分別為和,請用含和的等式表示你發(fā)現(xiàn)的規(guī)律;
(2)請驗證你所發(fā)現(xiàn)的規(guī)律;
(3)利用你發(fā)現(xiàn)的規(guī)律直接寫出下列算式的答案.
; ; ; .
【答案】(1)(10x+y)(10x+10-y)=100x(x+1)+y(10-y);(2)見解析;(3)3016;4221;5625;9025.
【解析】
(1)由題意得出每個數(shù)的積的規(guī)律是:十位數(shù)字乘以十位數(shù)字加一的積作為結(jié)果的千位和百位,兩個個位數(shù)字相乘的積作為結(jié)果的十位和個位,據(jù)此可得出結(jié)果;
(2)利用整式的運算法則化簡等式的左右兩邊,化簡結(jié)果相等即可得出結(jié)論;
(3)根據(jù)(1)中的結(jié)論計算即可.
解:(1)由已知等式知,每兩個數(shù)的積的規(guī)律是:十位數(shù)字乘以十位數(shù)字加一的積作為結(jié)果的千位和百位,兩個個位數(shù)字相乘的積作為結(jié)果的十位和個位,
∴(10x+y)(10x+10-y)=100x(x+1)+y(10-y);
(2)∵等式左邊=(10x+y)(10x+10-y)=(10x+y)[(10x-y)+10]=(10x+y)(10x-y)+10(10x+y)=100x2-y2+100x+10y;
等式右邊=100x(x+1)+y(10-y)=100x2+100x+10y-y2=100x2-y2+100x+10y,
∴(10x+y)(10x+10-y)=100x(x+1)+y(10-y);
(3)根據(jù)(1)中的規(guī)律可知,
3016;4221;5625;9025.
故答案為:3016;4221;5625;9025.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于點D,點O是AC邊上一點,連接BO交AD于F,OE⊥OB交BC邊于點E.
(1)求證:△ABF∽△COE;
(2)當(dāng)O為AC邊中點, 時,如圖2,求的值;
(3)當(dāng)O為AC邊中點, 時,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2,B3…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4…均為等邊三角形,從左起第1個等邊三角形的邊長記a1,第2個等邊三角形的邊長記為a2,以此類推,若OA1=3,則a2=_______,a2019=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,,,AD、BE相交于點M,連接CM.
求證:;
求的度數(shù)用含的式子表示;
如圖2,當(dāng)時,點P、Q分別為AD、BE的中點,分別連接CP、CQ、PQ,判斷的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,等腰中,于點,點是延長線上一點,點是線段上一點,下面的結(jié)論:①;②是等邊三角形;③;④.其中正確的是( )
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子里有若干個小球,它們除了顏色外,其它都相同,甲同學(xué)從袋子里隨機摸出一個球,記下顏色后放回袋子里,搖勻后再次隨機摸出一個球,記下顏色,…,甲同學(xué)反復(fù)大量實驗后,根據(jù)白球出現(xiàn)的頻率繪制了如圖所示的統(tǒng)計圖,則下列說法正確的是( 。
A. 袋子一定有三個白球
B. 袋子中白球占小球總數(shù)的十分之三
C. 再摸三次球,一定有一次是白球
D. 再摸1000次,摸出白球的次數(shù)會接近330次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,AD、BC相交于點E,點F在ED上,且∠CBF=∠D.
(1)求證:FB2=FEFA;
(2)若BF=3,EF=2,求△ABE與△BEF的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與軸交于點,與正比例函數(shù)的圖象相交于點,且.
(1)分別求出這兩個函數(shù)的解析式;
(2)求的面積;
(3)點在軸上,且是等腰三角形,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點E在BC上,AE=AD,DF⊥AE,垂足為F.
(1)求證.DF=AB;
(2)若∠FDC=30°,且AB=4,求AD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com