【題目】甲、乙二人同時從A地出發(fā),沿同一條道路去B地,途中都使用兩種不同的速度VlV2(Vl<V2),甲用一半的路程使用速度Vl、另一半的路程使用速度V2;乙用一半的時間使用速度Vl、另一半的時間使用速度V2;關(guān)于甲乙二人從A地到達B地的路程與時間的函數(shù)圖象及關(guān)系,有圖中4個不同的圖示分析.其中橫軸t表示時間,縱軸s表示路程,其中正確的圖示分析為( 。

A. 圖(1) B. 圖(1)或圖(2) C. 圖(3) D. 圖(4)

【答案】B

【解析】

由題意得:甲在一半路程處將進行速度的轉(zhuǎn)換,4個選項均符合;

乙在一半時間處將進行速度的轉(zhuǎn)換,函數(shù)圖象將在t1處發(fā)生彎折,只有(1)(2)(4)符合,再利用速度不同,所以行駛路程就不同,兩人不可能同時到達目的地,故(4)錯誤,故只有(1)(2)正確.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)只有一張乒乓球比賽的門票,誰都想去最后商定通過轉(zhuǎn)盤游戲決定游戲規(guī)則是:轉(zhuǎn)動下面平均分成三個扇形且標(biāo)有不同顏色的轉(zhuǎn)盤,轉(zhuǎn)盤連續(xù)轉(zhuǎn)動兩次,若指針前后所指顏色相同,則甲去;否則乙去.(如果指針恰好停在分割線上,那么重轉(zhuǎn)一次直到指針指向一種顏色為止

1轉(zhuǎn)盤連續(xù)轉(zhuǎn)動兩次,指針?biāo)割伾灿袔追N情況?通過畫樹狀圖或列表法加以說明;

2你認(rèn)為這個游戲公平嗎?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊ABAC上,AD=AE,連接DC,點MP,N分別為DEDC,BC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

(2)探究證明

ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,BCE=71°,CE=54cm.

(1)求單車車座E到地面的高度;(結(jié)果精確到1cm)

(2)根據(jù)經(jīng)驗,當(dāng)車座ECB的距離調(diào)整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結(jié)果精確到0.1cm)

(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰中,,,邊上一點且邊上的中點,連接,.

1)求的度數(shù);

2)若上存在點,且,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一條線段將一個三角形分成2個小等腰三角形,我們把這條線段叫做這個三角形的好線:如果兩條線段將一個三角形分成3個小等腰三角形,我們把這兩條線段叫做這個三角形的好好線”.

理解:

1)如圖1,在中,,點邊上,且,求的大小;

2)在圖1中過點作一條線段,使,好好線;

在圖2中畫出頂角為的等腰三角形的好好線,并標(biāo)注每個等腰三角形頂角的度數(shù)(畫出一種即可);

應(yīng)用:

3)在中,,好好線,點邊上,點邊上,且,,請求出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技進步,無人機的應(yīng)用越來越廣,如圖1,在某一時刻,無人機上的探測器顯示,從無人機A處看一棟樓頂部B點的仰角和看與頂部B在同一鉛垂線上高樓的底部C的俯角.

(1)如果上述仰角與俯角分別為30°60°,且該樓的高度為30米,求該時刻無人機的豎直高度CD;

(2)如圖2,如果上述仰角與俯角分別為αβ,且該樓的高度為m米.求用α、β、m表示該時刻無人機的豎直高度CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新知學(xué)習(xí),若一條線段把一個平面圖形分成面積相等的兩部分,我們把這條段線做該平面圖形的二分線解決問題:

1三角形的中線、高線、角平分線中,一定是三角形的二分線的是_______

如圖1,已知ABC中,ADBC邊上的中線,點E,F分別在AB,DC上,連接EF,與AD交于點G,若EF_____(不是”)△ABC的一條二分線.并說明理由.

(2)如圖2,四邊形ABCD中,CD平行于AB,點GAD的中點,射線CG交射線BA于點E,取EB的中點F,連接CF.求證:CF是四邊形ABCD的二分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB6,AC8,BC11,任作一條直線將△ABC分成兩個三角形,若其中有一個三角形是等腰三角形,則這樣的直線最多有(

A.5B.6C.7D.8

查看答案和解析>>

同步練習(xí)冊答案