補(bǔ)全證明過(guò)程:
如圖,∠1=∠2,∠C=∠D,求證:∠A=∠F.
證明:∵∠1=∠2(已知),
又∵∠1=∠DMN(
對(duì)頂角相等
對(duì)頂角相等

∴∠2=∠
DMN
DMN
(等量代換)
∴BD∥EC(同位角相等,兩直線平行)
∴∠ABD=∠C(
兩直線平行,同位角相等
兩直線平行,同位角相等

又∵∠C=∠D(已知)
∴∠ABD=∠D(等量代換)
∴DF∥AC(
內(nèi)錯(cuò)角相等,兩直線平行
內(nèi)錯(cuò)角相等,兩直線平行

∴∠A=∠F(
兩直線平行,內(nèi)錯(cuò)角相等
兩直線平行,內(nèi)錯(cuò)角相等
分析:由對(duì)頂角相等得到一對(duì)角相等,再由已知∠1=∠2,等量代換得到一對(duì)同位角相等,利用同位角相等兩直線平行得到BD與EC平行,由兩直線平行同位角相等得到∠ABD=∠C,再由∠C=∠D,得到一對(duì)內(nèi)錯(cuò)角相等,利用內(nèi)錯(cuò)角相等兩直線平行得到DF與AC平行,再利用兩直線平行內(nèi)錯(cuò)角相等即可得證.
解答:證明:∵∠1=∠2(已知),
又∵∠1=∠DMN(對(duì)頂角相等),
∴∠2=∠DMN(等量代換),
∴BD∥EC(同位角相等,兩直線平行),
∴∠ABD=∠C(兩直線平行,同位角相等),
又∵∠C=∠D(已知),
∴∠ABD=∠D(等量代換),
∴DF∥AC(內(nèi)錯(cuò)角相等,兩直線平行),
∴∠A=∠F(兩直線平行,內(nèi)錯(cuò)角相等).
故答案為:對(duì)頂角相等;DMN;兩直線平行,同位角相等;等量代換;內(nèi)錯(cuò)角相等,兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等
點(diǎn)評(píng):此題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,△ABC是⊙O的內(nèi)接正三角形,點(diǎn)P為
BC
上一動(dòng)點(diǎn),求證:PA=PB+PC.
下面給出一種證明方法,你可以按這一方法補(bǔ)全證明過(guò)程,也可以選擇另外的證明方法.
證明:在AP上截取AE=CP,連接BE
∵△ABC是正三角形
∴AB=CB
∵∠1和∠2的同弧圓周角
∴∠1=∠2
∴△ABE≌△CBP
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點(diǎn)P為
BC
上一動(dòng)點(diǎn),求證:PA=PC+
2
PB.
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點(diǎn)P為
BC
上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫(xiě)出結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(1)閱讀下列材料,補(bǔ)全證明過(guò)程:
已知:如圖,矩形ABCD中,AC、BD相交于點(diǎn)O,OE⊥BC于E,連接DE交OC于點(diǎn)F,作FG⊥BC于G.求證:點(diǎn)G是線段BC的一個(gè)三等分點(diǎn).
精英家教網(wǎng)
證明:在矩形ABCD中,OE⊥BC,DC⊥BC,
∴OE∥DC,∵
OE
DC
=
1
2
,∴
EF
FD
=
OE
DC
=
1
2
EF
ED
=
1
3
.…
(2)請(qǐng)你仿照(1)的畫(huà)法,在原圖上畫(huà)出BC的一個(gè)四等分點(diǎn)(要求保留畫(huà)圖痕跡,可不寫(xiě)畫(huà)法及證明過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

補(bǔ)全證明過(guò)程
已知:如圖,∠1=∠2,∠C=∠D.
求證:∠A=∠F.
證明:∵∠1=∠2(已知),
又∠1=∠DMN(
對(duì)頂角相等
對(duì)頂角相等
),
∴∠2=∠
DMN
DMN
(等量代換).
∴DB∥EC(同位角相等,兩直線平行).

∴∠A=∠F(兩直線平行,內(nèi)錯(cuò)角相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

1)閱讀下列材料,補(bǔ)全證明過(guò)程。

如圖,已知在矩形ABCD中,AC、BD相交于點(diǎn)O,

OEBC于點(diǎn)E,連結(jié)DEOC于點(diǎn)F,作FGBC于點(diǎn)G。

求證:點(diǎn)G是線段BC的一個(gè)三等分點(diǎn)。

證明:在矩形ABCD中,OEBCDCBC,∴ OE//DC

,∴

。

2)請(qǐng)你仿照上面的畫(huà)法,在原圖上畫(huà)出BC的一個(gè)四等分點(diǎn)。(要求:保留作圖痕跡,

不寫(xiě)畫(huà)法及證明過(guò)程)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案