如圖,在Rt△ABC中,∠C=90°,∠A=30°,.若動(dòng)點(diǎn)D在線段AC上(不與點(diǎn)A、C重合),過點(diǎn)D作DE⊥AC交AB邊于點(diǎn)E.
(1)當(dāng)點(diǎn)D運(yùn)動(dòng)到線段AC中點(diǎn)時(shí),DE=    ;
(2)點(diǎn)A關(guān)于點(diǎn)D的對稱點(diǎn)為點(diǎn)F,以FC為半徑作⊙C,當(dāng)DE=    時(shí),⊙C與直線AB相切.
【答案】分析:(1)求出BC,AC的值,推出DE為三角形ABC的中位線,求出即可;
(2)求出AB上的高,CH,即可得出圓的半徑,證△ADE∽△ACB得出比例式,代入求出即可.
解答:解:(1)∵∠C=90°,∠A=30°,
∴BC=AB=2,AC=6,
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D為AC中點(diǎn),
∴E為AB中點(diǎn),
∴DE=BC=,
故答案為:;

(2)過C作CH⊥AB于H,
∵∠ACB=90°,BC=2,AB=4,AC=6,
∴由三角形面積公式得:BC•AC=AB•CH,
CH=3,
分為兩種情況:①如圖1,
∵CF=CH=3,
∴AF=6-3=3,
∵A和F關(guān)于D對稱,
∴DF=AD=,
∵DE∥BC,
∴△ADE∽△ACB,
=,
=
DE=;
②如圖2,∵CF=CH=3,
∴AF=6+3=9,
∵A和F關(guān)于D對稱,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
=,
=,
DE=;
故答案為:
點(diǎn)評:本題考查了三角形的中位線,含30度角的直角三角形性質(zhì),相似三角形的性質(zhì)和判定等知識點(diǎn)的應(yīng)用,主要考查學(xué)生綜合運(yùn)用定理進(jìn)行推理和計(jì)算的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案