【題目】(1)方法選擇
如圖①,四邊形是的內(nèi)接四邊形,連接,,.求證:.
小穎認(rèn)為可用截長法證明:在上截取,連接…
小軍認(rèn)為可用補(bǔ)短法證明:延長至點(diǎn),使得…
請你選擇一種方法證明.
(2)類比探究
(探究1)
如圖②,四邊形是的內(nèi)接四邊形,連接,,是的直徑,.試用等式表示線段,,之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(探究2)
如圖③,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.
(3)拓展猜想
如圖④,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.
【答案】(1)方法選擇:證明見解析;(2)【探究1】:;【探究2】;(3)拓展猜想:.
【解析】
(1)方法選擇:根據(jù)等邊三角形的性質(zhì)得到∠ACB=∠ABC=60°,如圖①,在BD上截取DM=AD,連接AM,由圓周角定理得到∠ADB=∠ACB=60°,得到AM=AD,根據(jù)全等三角形的性質(zhì)得到BM=CD,于是得到結(jié)論;
(2)類比探究:如圖②,由BC是⊙O的直徑,得到∠BAC=90°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABC=∠ACB=45°,過A作AM⊥AD交BD于M,推出△ADM是等腰直角三角形,求得DM=AD根據(jù)全等三角形的性質(zhì)得到結(jié)論;
【探究2】
如圖③,根據(jù)圓周角定理和三角形的內(nèi)角和得到∠BAC=90°,∠ACB=60°,過A作AM⊥AD交BD于M,求得∠AMD=30°,根據(jù)直角三角形的性質(zhì)得到MD=2AD,根據(jù)相似三角形的性質(zhì)得到BM=CD,于是得到結(jié)論;
(3)如圖④,由BC是⊙O的直徑,得到∠BAC=90°,過A作AM⊥AD交BD于M,求得∠MAD=90°,根據(jù)相似三角形的性質(zhì)得到BM=CD,DM=AD,于是得到結(jié)論.
(1)方法選擇:∵,
∴,
如圖①,在上截取,連接,
∵,
∴是等邊三角形,
∴,
∵,
∵,
∴,
∴,
∴;
(2)類比探究:如圖②,
∵是的直徑,
∴,
∵,
∴,
過作交于,
∵,
∴是等腰直角三角形,
∴,,
∴,
∴,
∵,
∴,
∴,
∴;
[探究2]如圖③,∵若是的直徑,,
∴,,
過作交于,
∵,
∴,
∴,
∵,,
∴,
∴,
∴,
∴;
故答案為;
(3)拓展猜想:;
理由:如圖④,∵若是的直徑,
∴,
過作交于,
∴,
∴,
∴,
∴,
∴,
∵,,
∴,
∴,
∴,
∴.
故答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l:y=x+b與x軸交于點(diǎn)A(﹣2,0),與y軸交于點(diǎn)B.雙曲線y與直線l交于P,Q兩點(diǎn),其中點(diǎn)P的縱坐標(biāo)大于點(diǎn)Q的縱坐標(biāo)
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求k的值;
(3)連接PO,記△POB的面積為S.若,結(jié)合函數(shù)圖象,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線,點(diǎn)在直線上,以點(diǎn)為圓心,適當(dāng)長度為半徑畫弧,分別交直線,于,兩點(diǎn),以點(diǎn)為圓心,長為半徑畫弧,與前弧交于點(diǎn)(不與點(diǎn)重合),連接,,,,其中交于點(diǎn).若,則下列結(jié)論錯(cuò)誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)如圖1,在和中,,,,連接交于點(diǎn).填空:①的值為______;②的度數(shù)為______.
(2)類比探究如圖2,在和中,,,連接交的延長線于點(diǎn).請判斷的值及的度數(shù),并說明理由;
(3)拓展延伸在(2)的條件下,將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),所在直線交于點(diǎn),若,,請直接寫出當(dāng)點(diǎn)與點(diǎn)在同一條直線上時(shí)的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解全校學(xué)生對電視節(jié)目的喜愛情況(新聞、體育、動(dòng)畫、娛樂、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)以上信息,解答下列問題:
(1)這次被調(diào)查的學(xué)生共有多少人?
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂節(jié)目的有多少人?
(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學(xué)中選取2名,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】宏興企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價(jià)為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系: .
(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?
(2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與x的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關(guān)系式,并求出第幾天時(shí),利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,E是CD邊上的點(diǎn),過點(diǎn)E作EF⊥BD于F.
(1)尺規(guī)作圖:在圖中求作點(diǎn)E,使得EF=EC;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,連接FC,求∠BCF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校七年級學(xué)生每周上網(wǎng)的時(shí)間,甲、乙兩名學(xué)生進(jìn)行了抽樣調(diào)查.甲同學(xué)調(diào)查了七年級電腦愛好者中40名學(xué)生每周上網(wǎng)的時(shí)間;乙同學(xué)從全校800名七年級學(xué)生中隨機(jī)抽取了40名學(xué)生,調(diào)查了每周上網(wǎng)的時(shí)間.甲、乙同學(xué)各自整理的樣本數(shù)據(jù)如表:
上網(wǎng)時(shí)間t(小時(shí)/周) | 甲學(xué)生抽樣人數(shù)(人) | 乙學(xué)生抽樣人數(shù)(人) |
0≤t<1.5 | 6 | 22 |
1.5≤t<2.5 | 10 | 10 |
2.5≤t<3.5 | 16 | 6 |
t≥3.5 | 8 | 2 |
(1)你認(rèn)為哪名學(xué)生抽取的樣本不合理,請說明理由.
(2)請你根據(jù)抽取樣本合理的學(xué)生的數(shù)據(jù),將調(diào)查結(jié)果繪制成合適的統(tǒng)計(jì)圖(繪制一種即可).
(3)專家建議每周上網(wǎng)2.5小時(shí)以上(含2.5小時(shí))的學(xué)生應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,估計(jì)該校全體七年級學(xué)生中應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CM∥AN).
(1)求燈桿CD的高度;
(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com