【題目】某小龍蝦養(yǎng)殖大戶為了更好地發(fā)揮技術優(yōu)勢,一次性收購了20000kg小龍蝦,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).
(1)設每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求a和b的值;
(2)設這批小龍蝦放養(yǎng)t天后的質量為m(kg),銷售單價為y元/kg.根據(jù)以往經(jīng)驗可知:m與t的函數(shù)關系為;y與t的函數(shù)關系如圖所示.
①分別求出當0≤t≤50和50<t≤100時,y與t的函數(shù)關系式;
②設將這批小龍蝦放養(yǎng)t天后一次性出售所得利潤為W元,求當t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)
【答案】(1)a的值為0.04,b的值為30;(2)①當0≤t≤50時,,當50<t≤100時,;(3)放養(yǎng)55天時,W最大,最大值為180250元.
【解析】
(1)由放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元可得答案;
(2)①分0≤t≤50、50<t≤100兩種情況,結合函數(shù)圖象利用待定系數(shù)法求解可得;
②就以上兩種情況,根據(jù)“利潤=銷售總額-總成本”列出函數(shù)解析式,依據(jù)一次函數(shù)性質和二次函數(shù)性質求得最大值即可得.
(1)由題意,得:,解得:.
答:a的值為0.04,b的值為30.
(2)①當0≤t≤50時,設y與t的函數(shù)解析式為,將(0,15)、(50,25)代入,得:,解得:,∴y與t的函數(shù)解析式為
當50<t≤100時,設y與t的函數(shù)解析式為,將點(50,25)、(100,20)代入,得:,解得:,∴y與t的函數(shù)解析式為
②由題意,當0≤t≤50時,W=20000(t+15)﹣(400t+300000)=3600t.
∵3600>0,∴當t=50時,W最大值=180000(元);
當50<t≤100時,W=(100t+15000)(﹣t+30)﹣(400t+300000)
=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250.
∵﹣10<0,∴當t=55時,W最大值=180250(元).
綜上所述:放養(yǎng)55天時,W最大,最大值為180250元.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程 kx2+(2k+1)x+k+2=0.
(1)若該方程有兩個不相等的實數(shù)根,求k的取值范圍;
(2)若該方程的兩根x1、x2滿足=-3,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D是等邊三角形ABC的邊BC上一點,以AD為邊作等邊△ADE,連接CE.
(1)求證:;
(2)若∠BAD=20°,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于點E,AD⊥BC于點D.
(1)如圖1,作∠ADB的角平分線DF交BE于點F,連接AF.求證:∠FAB=∠FBA;
(2)如圖2,連接DE,點G與點D關于直線AC對稱,連接DG、EG
①依據(jù)題意補全圖形;
②用等式表示線段AE、BE、DG之間的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系內,以原點O為圓心,1為半徑作圓,點P在直線上運動,過點P作該圓的一條切線,切點為A,則PA的最小值為
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙O交AB于點F,連接DB交⊙O于點H,E是BC上的一點,且BE=BF,連接DE.
(1)求證:DE是⊙O的切線.
(2)若BF=2,BD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次籃球比賽中,如圖隊員甲正在投籃.已知球出手時離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時達到最大高度4 m,設籃球運行軌跡為拋物線,籃圈距地面3 m.
(1)建立如圖所示的平面直角坐標系,問此球能否準確投中?
(2)此時,對方隊員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,對于拋物線,下列說法中錯誤的是( )
A.y的最小值為1
B.圖象頂點坐標為(2,1),對稱軸為直線x=2
C.當x<2時,y的值隨x值的增大而增大,當x>2時,y的值隨x值的增大而減小
D.它的圖象可以由的圖象向右平移2個單位長度,再向上平移1個單位長度得到
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com