【題目】在平面上有且只有4個(gè)點(diǎn),這4個(gè)點(diǎn)中有一個(gè)獨(dú)特的性質(zhì):連結(jié)每兩點(diǎn)可得到6條線段,這6條線段有且只有兩種長度.我們把這四個(gè)點(diǎn)稱作準(zhǔn)等距點(diǎn).例如正方形ABCD的四個(gè)頂點(diǎn)(如圖1),有AB=BC=CD=DA,AC=BD.其實(shí)滿足這樣性質(zhì)的圖形有很多,如圖2中A、B、C、O四個(gè)點(diǎn),滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個(gè)點(diǎn),滿足OA=OB=OC=BC,AB=AC.
(1)如圖,若等腰梯形ABCD的四個(gè)頂點(diǎn)是準(zhǔn)等距點(diǎn),且AD∥BC.
①寫出相等的線段(不再添加字母);
②求∠BCD的度數(shù).
(2)請?jiān)佼嫵鲆粋(gè)四邊形,使它的四個(gè)頂點(diǎn)為準(zhǔn)等距點(diǎn),并寫出相等的線段.
【答案】(1)①AB=DC=AD, AC=BD=BC.②∠BCD=72°.(2)見解析.
【解析】
(1)①結(jié)合等腰梯形的性質(zhì)及題意所表述的含義可寫出符合題意的結(jié)論.②先證△ABC≌△DCB,得出∠DBC=∠ACB,根據(jù)題意可求得∠BDC=∠BCD=2∠ACB,設(shè)∠ACB=x°,利用內(nèi)角和定理可得出答案.
(2)可選擇畫菱形.
解:(1)①AB=DC=AD,AC=BD=BC,
②∵AC=BD,AB=DC,BC=BC,
∴△ABC≌△DCB,
∴∠DBC=∠ACB,
∵AD∥BC,
∴∠DAC=∠ACB,
∵DC=AD,∠DAC=∠ACD,
∴∠ACD=∠ACB,
∵BC=BD,∠BDC=∠BCD=2∠ACB,
設(shè)∠ACB=x°,則∠BDC=∠BCD=2x°,∠DBC=x°,
∴2x+2x+x=180,
解得x=36,
∴∠BCD=72°.
(2)所畫圖形如下:四邊形ABCD是菱形(∠DAB=60°),
AB=BC=CD=AD=BD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地,先是一段上坡路,然后是一段平路,小明騎車從甲地出發(fā),到達(dá)乙地后休息一段時(shí)間,然后原路返回甲地.假設(shè)小明騎車在上坡、平路、下坡時(shí)分別保持勻速前進(jìn),已知小明騎車上坡的速度比平路上的速度每小時(shí)少5km,下坡的速度比在平路上的速度每小時(shí)多5km,設(shè)小明出發(fā)xh后,到達(dá)離乙地ykm的地方,圖中的折線ABCDEF表示y與x之間的函數(shù)關(guān)系.
(1)小明騎車在平路上的速度為 km/h,他在乙地休息了 h.
(2)分別求線段AB、EF所對應(yīng)的函數(shù)關(guān)系式.
(3)從甲地到乙地經(jīng)過丙地,如果小明兩次經(jīng)過丙地的時(shí)間間隔為0.85h,求丙地與甲地之間的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.已知點(diǎn)C(﹣2,0).
(1)求出點(diǎn)A,點(diǎn)B的坐標(biāo).
(2)P是直線AB上一動(dòng)點(diǎn),且△BOP和△COP的面積相等,求點(diǎn)P坐標(biāo).
(3)如圖2,平移直線l,分別交x軸,y軸于交于點(diǎn)A1,B1,過點(diǎn)C作平行于y軸的直線m,在直線m上是否存在點(diǎn)Q,使得△A1B1Q是等腰直角三角形?若存在,請直接寫出所有符合條件的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=3x與反比例函數(shù)y=的圖象交于點(diǎn)A,B,點(diǎn)P在以C(﹣4,0)為圓心,1為半徑的⊙C上,Q是AP的中點(diǎn),若OQ長的最大值為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)中函數(shù)y與自變量x之間部分對應(yīng)值如下表所示,點(diǎn)在函數(shù)圖象上
x | … | 0 | 1 | 2 | 3 | … |
y | … | m | n | 3 | n | … |
則表格中的m=______;當(dāng)時(shí),和的大小關(guān)系為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜邊在x軸上,斜邊長分別為2,4,6,…的等直角三角形,若△A1A2A3的頂點(diǎn)坐標(biāo)分別為A1(2,0),A2(1,1),A3(0,0),則依圖中所示規(guī)律,A2019的坐標(biāo)為( )
A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,正方形OABC的頂點(diǎn)A、C分別在x,y軸上,且AO=1.將正方形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,且A1O=2AO,得到正方形OA1B1C1,再將正方OA1B1C1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,且A2O=2A1O,得到正方形OA2B2C2…以此規(guī)律,得到正方形OA2019B2019C2019,則點(diǎn)B2019的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊的周長為1,作于,在的延長線上取點(diǎn),使,連接,以為邊作等邊;作于,在的延長線上取點(diǎn),使,連接,以為邊作等邊;…且點(diǎn),,,…都在直線同側(cè),如此下去,可得到的邊長為__________.(,且為整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過,兩點(diǎn),與軸正半軸交于點(diǎn),連接,為線段上的動(dòng)點(diǎn),與,不重合,作交于,關(guān)于的對稱點(diǎn)為,連接,,.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)在拋物線上時(shí),求點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)的橫坐標(biāo)為,與重疊部分的面積為.
①直接寫出與的函數(shù)關(guān)系式;
②當(dāng)為直角三角形時(shí),直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com