【題目】某學(xué)校小組利用暑假中前40天參加社會(huì)實(shí)踐活動(dòng),參與了一家網(wǎng)上書(shū)店經(jīng)營(yíng),了解到一種成本每本20元的書(shū)在x天銷(xiāo)售量P=50﹣x.在第x天的售價(jià)每本y元,y與x的關(guān)系如圖所示. 已知當(dāng)社會(huì)實(shí)踐活動(dòng)時(shí)間超過(guò)一半后.y=20+
(1)請(qǐng)求出當(dāng)1≤x≤20時(shí),y與x的函數(shù)關(guān)系式,并求出第12天此書(shū)的銷(xiāo)售單價(jià);
(2)這40天中該網(wǎng)點(diǎn)銷(xiāo)售此書(shū)第幾天獲得的利潤(rùn)最大?最大的利潤(rùn)是多少?

【答案】
(1)解:當(dāng)1≤x≤20時(shí),設(shè)y=kx+b,將(1,30.5),(20,40)代入得:

,

解得: ,

則y與x的函數(shù)關(guān)系式為:y= x+30(1≤x≤20),

當(dāng)x=12時(shí),y=6+30=36,

答:函數(shù)關(guān)系式為:y= x+30,第12天該商品的銷(xiāo)售單價(jià)為每本36元


(2)解:設(shè)該網(wǎng)店第x天獲得的利潤(rùn)為w元.

當(dāng)1≤x≤20時(shí),w=( x+30﹣20)(50﹣x)=﹣ x2+15x+500=﹣ (x﹣15)2+ ,

∵﹣ <0,

∴當(dāng)x=15時(shí),w有最大值w1,且w1= ,

當(dāng)21≤x≤40時(shí),w=(20+ ﹣20)(50﹣x)= ﹣315,

∵15750>0,

隨x的增大而減小,

∴x=21時(shí), 最大.

于是,x=21時(shí),w有最大值w2,且w2= ﹣315=435,

∵w1>w2

∴這40天中該網(wǎng)點(diǎn)銷(xiāo)售此書(shū)第10天獲得的利潤(rùn)最大,最大的利潤(rùn)是612.5元


【解析】(1)當(dāng)1≤x≤20時(shí),設(shè)y=kx+b,將(1,30.5),(20,40)代入,利用待定系數(shù)法求出y與x的函數(shù)關(guān)系式;然后在每個(gè)x的取值范圍內(nèi),令y=35,分別解出x的值即可;(2)利用利潤(rùn)=售價(jià)﹣成本,分別求出在1≤x≤20和21≤x≤40時(shí),獲得的利潤(rùn)w與x的函數(shù)關(guān)系式;再利用二次函數(shù)及反比例函數(shù)的性質(zhì)求出最大值,然后比較即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,∠CAB=70°,現(xiàn)將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定角度后得到△AB′C′,連接BB′,若BB′∥AC′,則∠CAB′的度數(shù)為(
A.20°
B.25°
C.30°
D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖、在三角形 ABC 中,B(2,0),把三角形 ABC 沿AC 邊平移,使 A 點(diǎn)到 C 點(diǎn),△ABC 變換為△DCE.已知 C(0,3.5) 請(qǐng)寫(xiě)出 A、D、E 的坐標(biāo),并說(shuō)出平移的過(guò)程。(書(shū)寫(xiě)時(shí)沿著 x 軸平 移,再沿著 y 軸平移。)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】宜賓市某化工廠,現(xiàn)有A種原料52千克,B種原料64千克,現(xiàn)用這些原料生產(chǎn)甲、乙兩種產(chǎn)品共20件.已知生產(chǎn)1件甲種產(chǎn)品需要A種原料3千克,B種原料2千克;生產(chǎn)1件乙種產(chǎn)品需要A種原料2千克,B種原料4千克,則生產(chǎn)方案的種數(shù)為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】宜賓市某化工廠,現(xiàn)有A種原料52千克,B種原料64千克,現(xiàn)用這些原料生產(chǎn)甲、乙兩種產(chǎn)品共20件.已知生產(chǎn)1件甲種產(chǎn)品需要A種原料3千克,B種原料2千克;生產(chǎn)1件乙種產(chǎn)品需要A種原料2千克,B種原料4千克,則生產(chǎn)方案的種數(shù)為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在直角三角形ABC中,∠BAC=90°,ADBC于點(diǎn)D,可知:∠BAD=C(不需要證明);

(1)如圖②,MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C分別在∠MAN的邊AM、AN上,且AB=AC,CFAE于點(diǎn)F,BDAE于點(diǎn)D.求證:△ABD≌△CAF;

(2)如圖③,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F在∠MAN內(nèi)部的射線AD上,∠1、2分別是△ABE與△CAF的外角.已知AB=AC,1=2=BAC.求證:△ABE≌△CAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作ADE,使AD=AE,DAE=BAC,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果BAC=90,則BCE 度;

(2)設(shè)BAC=,BCE=

如圖2,當(dāng)點(diǎn)D在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

當(dāng)點(diǎn)D在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論,不必說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案