在?ABCD中,∠A與∠B的度數(shù)之比為2:3,則∠B的度數(shù)是    度;∠D的度數(shù)是    度.
【答案】分析:由平行四邊形的性質(zhì)可得出∠A和∠B互為補(bǔ)角,從而設(shè)∠A=2x°,∠B=3x°,根據(jù)∠A和∠B=180°可解出x的值,也即可得出∠B及∠D的度數(shù).
解答:解:設(shè)∠A=2x°,∠B=3x°,
由題意得:2x+3x=180°,
解得:x=36°,
∴∠B=∠D=108°.
故答案為:108、108.
點(diǎn)評(píng):本題考查平行四邊形的性質(zhì),掌握平行四邊形的相鄰內(nèi)角互為補(bǔ)角,相對(duì)內(nèi)角相等是解答本題的關(guān)鍵,屬于基礎(chǔ)題,比較簡單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、在?ABCD中,若∠A=3∠B,則∠D=
45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,E、F分別為邊AB、CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BEDF是平行四邊形;
(3)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,EF∥AB,MN∥BC,MN與EF交于點(diǎn)O,且O點(diǎn)在對(duì)角線上,圖中面積相等的四邊形有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,BD為對(duì)角線,EF垂直平分BD分別交AD、BC的于點(diǎn)E、F,交BD于點(diǎn)O.

(1)試說明:BF=DE;
(2)試說明:△ABE≌△CDF;
(3)如果在?ABCD中,AB=5,AD=10,有兩動(dòng)點(diǎn)P、Q分別從B、D兩點(diǎn)同時(shí)出發(fā),沿△BAE和△DFC各邊運(yùn)動(dòng)一周,即點(diǎn)P自B→A→E→B停止,點(diǎn)Q自D→F→C→D停止,點(diǎn)P運(yùn)動(dòng)的路程是m,點(diǎn)Q運(yùn)動(dòng)的路程是n,當(dāng)四邊形BPDQ是平行四邊形時(shí),求m與n滿足的數(shù)量關(guān)系.(畫出示意圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,點(diǎn)E在邊BC上,點(diǎn)F在BC的延長線上,且BE=CF.
(1)求證:∠BAE=∠CDF.
(2)判斷四邊形AEFD的形狀并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案