【題目】我們把a、b兩個數(shù)中較小的數(shù)記作min{a,b},直線y=kx﹣k﹣2(k<0)與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個交點,則k的取值為

【答案】2﹣2 或﹣ 或﹣1
【解析】解:根據(jù)題意,x2﹣1<﹣x+1,即x2+x﹣2<0,
解得:﹣2<x<1,
故當﹣2<x<1時,y=x2﹣1;
當x≤﹣2或x≥1時,y=﹣x+1;
函數(shù)圖象如下:

由圖象可知,∵直線y=kx﹣k﹣2(k<0)與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個交點,且k<0,
①直線y=kx﹣k﹣2經(jīng)過點(﹣2,3)時,3=﹣2k﹣k﹣2,k=﹣ ,此時直線y=﹣ x﹣ ,與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個交點.
②直線y=kx﹣k﹣2與函數(shù)y=x2﹣1相切時,由 消去y得x2﹣kx+k+1=0,∵△=0,k<0,
∴k2﹣4k﹣4=0,
∴k=2﹣2 (或2+2 舍棄),此時直線y=(2﹣2 )x﹣4+2 與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個交點.
③直線y=kx﹣k﹣2和直線y=﹣x+1平行,k=﹣1,直線為y=﹣x﹣1與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個交點.
綜上,k=2﹣2 或﹣ 或﹣1.
故答案為:2﹣2 或﹣ 或﹣1.
結合x的范圍畫出函數(shù)y=min{x2﹣1、﹣x+1}圖象,由直線y=kx﹣k﹣2(k<0)與該函數(shù)圖象只有兩個交點且k<0,判斷直線的位置得①直線y=kx﹣k﹣2經(jīng)過點(﹣2,3)時可以求出k;②直線y=kx﹣k﹣2與函數(shù)y=x2﹣1相切時,可以求出k.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,CDAB邊上的高,∠BAC的平分線為AFAFCD交于點E,則CEF__________三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),A、E、F、C在一條直線上,AE=CF,過E、F分別作DEAC,BFAC,若AB=CD,試證明BD平分EF,若將DEC的邊EC沿AC方向移動變?yōu)閳D(2)時,其余條件不變,上述結論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時間為標準分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計圖(圖都不完整).

請根據(jù)以上信息,解答下列問題:

(1)該汽車交易市場去年共交易二手轎車   輛.

(2)把這幅條形統(tǒng)計圖補充完整.(畫圖后請標注相應的數(shù)據(jù))

(3)在扇形統(tǒng)計圖中,D類二手轎車交易輛數(shù)所對應扇形的圓心角為   度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=(x﹣1)2+n與x軸交于A,B兩點(A在B的左側),與y軸交于點C(0,﹣3),點D與點C關于拋物線的對稱軸對稱.

(1)求拋物線的解析式及點D的坐標;
(2)點P是拋物線對稱軸上的一動點,當△PAC的周長最小時,求出點P的坐標;
(3)點Q在x軸上,且∠ADQ=∠DAC,請直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】進入冬季,我市空氣質量下降,多次出現(xiàn)霧霾天氣.商場根據(jù)市民健康需要,代理銷售一種防塵口罩,進貨價為20元/包,經(jīng)市場銷售發(fā)現(xiàn):銷售單價為30元/包時,每周可售出200包,每漲價1元,就少售出5包.若供貨廠家規(guī)定市場價不得低于30元/包,且商場每周完成不少于150包的銷售任務.
(1)試確定周銷售量y(包)與售價x(元/包)之間的函數(shù)關系式;
(2)試確定商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數(shù)關系式,并直接寫出售價x的范圍;
(3)當售價x(元/包)定為多少元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=65°,∠B=75°,將△ABC沿EF對折,使C點與C′點重合.當∠1=45°時,∠2=________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】進入冬季,我市空氣質量下降,多次出現(xiàn)霧霾天氣.商場根據(jù)市民健康需要,代理銷售一種防塵口罩,進貨價為20元/包,經(jīng)市場銷售發(fā)現(xiàn):銷售單價為30元/包時,每周可售出200包,每漲價1元,就少售出5包.若供貨廠家規(guī)定市場價不得低于30元/包,且商場每周完成不少于150包的銷售任務.
(1)試確定周銷售量y(包)與售價x(元/包)之間的函數(shù)關系式;
(2)試確定商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數(shù)關系式,并直接寫出售價x的范圍;
(3)當售價x(元/包)定為多少元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形ABCD中,AB=6,∠DBC=30°,DM平分∠BDC交BC于M,△EFG中,∠F=90°,GF= ,∠E=30°,點F、G、B、C共線,且G、B重合,△EFG沿折線B﹣M﹣D方向以每秒 個單位長度平移,得到△E1F1G1 , 平移過程中,點G1始終在折線B﹣M﹣D上,△E1F1G1與△DBM無重疊時,△E1F1G1停止運動,設△E1F1G1與△DBM重疊部分面積為S,平移時間為t,

(1)當△E1F1G1的頂點G1恰好在BD上時,t=秒;
(2)直接寫出S與t的函數(shù)關系式,及自變量t的取值范圍;
(3)如圖2,△E1F1G1平移到G1與M重合時,將△E1F1G1繞點M旋轉α°(0°<α<180°)得到△E2F2G1 , 點E1、F1分別對應E2、F2 , 設直線F2E2與直線DM交于P,與直線DC交于Q,是否存在這樣的α,使△DPQ為直角三角形?若存在,求α的度數(shù)和DQ的長;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案