【題目】如圖,點(diǎn)O為正六邊形ABCDEF的中心,點(diǎn)M為AF中點(diǎn),以點(diǎn)O為圓心,以OM的長(zhǎng)為半徑畫(huà)弧得到扇形MON,點(diǎn)N在BC上;以點(diǎn)E為圓心,以DE的長(zhǎng)為半徑畫(huà)弧得到扇形DEF,把扇形MON的兩條半徑OM,ON重合,圍成圓錐,將此圓錐的底面半徑記為r1;將扇形DEF以同樣方法圍成的圓錐的底面半徑記為r2,則r1:r2=_____.
【答案】
【解析】根據(jù)題意正六邊形中心角為120°且其內(nèi)角為120°.求出兩個(gè)扇形圓心角,表示出扇形半徑即可.
連OA
由已知,M為AF中點(diǎn),則OM⊥AF
∵六邊形ABCDEF為正六邊形
∴∠AOM=30°
設(shè)AM=a
∴AB=AO=2a,OM=
∵正六邊形中心角為60°
∴∠MON=120°
∴扇形MON的弧長(zhǎng)為:
則r1=a
同理:扇形DEF的弧長(zhǎng)為:
則r2=
r1:r2=
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中BA=BC,點(diǎn)D是AB延長(zhǎng)線(xiàn)上一點(diǎn),DF⊥AC于F交BC于E,
求證:△DBE是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,D、E分別是邊AB、BC上的點(diǎn),AE和CD交于點(diǎn)F,且∠CFE=∠B。
(1)如圖1,求證:∠AEC=∠CDB;
(2)如圖2,過(guò)點(diǎn)C作CG⊥AC,交AB于點(diǎn)G,CD⊥CB,∠ACD =∠CAB-∠B,求證:AC=GC;
(3)如圖3,在(2)的條件下,CE+CD=AE,CG=,求線(xiàn)段BC的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)為(6,4).
(1)請(qǐng)用直尺(不帶刻度)和圓規(guī)作一條直線(xiàn)AC,它與x軸和y軸的正半軸分別交于點(diǎn)A和點(diǎn)C,且使∠ABC=90°,△ABC與△AOC的面積相等.(作圖不必寫(xiě)作法,但要保留作圖痕跡.)
(2)問(wèn):(1)中這樣的直線(xiàn)AC是否唯一?若唯一,請(qǐng)說(shuō)明理由;若不唯一,請(qǐng)?jiān)趫D中畫(huà)出所有這樣的直線(xiàn)AC,并寫(xiě)出與之對(duì)應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知港口A東偏南10°方向有一處小島B,一艘貨輪從港口A沿南偏東40°航線(xiàn)出發(fā),行駛80海里到達(dá)C處,此時(shí)觀測(cè)小島B在北偏東60°方向.
(1)求此時(shí)貨輪到小島B的距離.
(2)在小島周?chē)?/span>36海里范圍內(nèi)是暗礁區(qū),此時(shí)輪船向正東方向航行有沒(méi)有觸礁危險(xiǎn)?請(qǐng)作出判斷并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線(xiàn)a,b互相平行的是( )
A. 如圖1,展開(kāi)后測(cè)得∠1=∠2
B. 如圖2,展開(kāi)后測(cè)得∠1=∠2且∠3=∠4
C. 如圖3,測(cè)得∠1=∠2
D. 如圖4,展開(kāi)后再沿CD折疊,兩條折痕的交點(diǎn)為O,測(cè)得OA=OB,OC=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 推理填空
已知:如圖所示,點(diǎn)B,C,E在同一條直線(xiàn)上,AB∥CD,∠1=∠2,∠3=∠4,求證:AD∥BE
證明:∵AB∥CD(已知)
∴∠4=∠______(______)
∵∠3=∠4(已知)∴∠3=∠______(______)
∴∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性質(zhì))
即∠BAF=∠DAC
∴∠3=∠______(等量代換)
∴AD∥BE(______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分線(xiàn)相交于點(diǎn)D,∠ADC=125°,求∠ACB和∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠BAC=100°.
(1)若∠ABC和∠ACB的角平分線(xiàn)交于點(diǎn)O,如圖1所示,試求∠BOC的大;
(2)若∠ABC和∠ACB的三等分線(xiàn)(即將一個(gè)角平均分成三等分的射線(xiàn))相交于O,O1,如圖2所示,試求∠BOC的大小;
(3)如此類(lèi)推,若∠ABC和∠ACB的n等分線(xiàn)自下而上依次相交于O,O1,O2…,如圖3所示,試探求∠BOC的大小與n的關(guān)系,并判斷當(dāng)∠BOC=170°時(shí),是幾等分線(xiàn)的交線(xiàn)所成的角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com