【題目】如圖,已知拋物線C1交直線y=3于點(diǎn)A(﹣4,3),B(﹣1,3),交y軸于點(diǎn)C0,6).

1)求C1的解析式.

2)求拋物線C1關(guān)于直線y=3的對(duì)稱拋物線的解析式;設(shè)C2x軸于點(diǎn)D和點(diǎn)E(點(diǎn)D在點(diǎn)E的左邊),求點(diǎn)D和點(diǎn)E的坐標(biāo).

3)將拋物線C1水平向右平移得到拋物線C3,記平移后點(diǎn)B的對(duì)應(yīng)點(diǎn)B′,若DB平分∠BDE,求拋物線C3的解析式.

4)直接寫出拋物線C1關(guān)于直線y=nn 為常數(shù))對(duì)稱的拋物線的解析式.

【答案】1C1的解析式為y=x2+x+6;(2)拋物線C2的解析式為y=x2x,D(﹣5,0),E0,0);(3)拋物線C3的解析式為y=;(4y=x2x+2n6

【解析】

1)設(shè)拋物線C1經(jīng)的解析式為y=ax2+bx+c,將點(diǎn)A、B、C的坐標(biāo)代入求解即可得到解析式;

2)先求出點(diǎn)C關(guān)于直線y=3的對(duì)稱點(diǎn)的坐標(biāo)為(0,0),設(shè)拋物線C2的解析式為y=a1x2+b1x+c1,即可求出答案;

3)如圖,根據(jù)平行線的性質(zhì)及角平分線的性質(zhì)得到BB′=DB,利用勾股定理求出DB的長(zhǎng)度即可得到拋物線平移的距離,由此得到平移后的解析式;

4)設(shè)拋物線C1關(guān)于直線y=nn 為常數(shù))對(duì)稱的拋物線的解析式為y=mx+nx+k,根據(jù)對(duì)稱性得到m、n的值,再利用對(duì)稱性得到新函數(shù)與y軸交點(diǎn)坐標(biāo)得到k的值,由此得到函數(shù)解析式.

1)設(shè)拋物線C1經(jīng)的解析式為y=ax2+bx+c,

∵拋物線C1經(jīng)過(guò)點(diǎn)A(﹣43),B(﹣1,3),C0,6).

,

解得,

C1的解析式為y=x2+x+6;

2)∵C點(diǎn)關(guān)于直線y=3的對(duì)稱點(diǎn)為(00),

設(shè)拋物線C2的解析式為y=a1x2+b1x+c1

,

解得,

∴拋物線C2的解析式為y=x2x;

y=0,則﹣x2x=0,

解得x1=0,x2=5,

D(﹣5,0),E0,0);

3)如圖,

DB′平分∠BDE

∴∠BDB′=ODB′,

ABx軸,

∴∠BB′D=ODB′,

∴∠BDB′=BB′D,

BB′=DB

BD==5,

∴將拋物線C1水平向右平移5個(gè)單位得到拋物線C3,

C1的解析式為y=x2+x+6=x+2+

∴拋物線C3的解析式為y=x+52+=

4)設(shè)拋物線C1關(guān)于直線y=nn 為常數(shù))對(duì)稱的拋物線的解析式為y=mx+nx+k,

根據(jù)對(duì)稱性得:新拋物線的開口方向與原拋物線的開口方向相反,開口大小相同,故m=-,對(duì)稱軸沒(méi)有變化,故n=-

當(dāng)n>6時(shí),n+n-6=2n-6,故新拋物線與y軸的交點(diǎn)為(0,2n-6),

當(dāng)n<6時(shí),n-6-n=2n-6,新拋物線與y軸的交點(diǎn)為(0,2n-6),

k=2n-6,

∴拋物線C1關(guān)于直線y=nn 為常數(shù))對(duì)稱的拋物線的解析式為:y=x2x+2n6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,5.它們除了數(shù)字外沒(méi)有任何區(qū)別,

1隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;

2隨機(jī)地分別從A組、B組各抽取一張,請(qǐng)你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC的頂點(diǎn)B在⊙O上. AC經(jīng)過(guò)圓心0并與圓相交于點(diǎn)D,C,過(guò)C作直線CEAB,交AB的延長(zhǎng)線于點(diǎn)E,且CB平分∠ACE

1)求證:AB是圓O的切線;

2)若BE=3,CE=4,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】央視經(jīng)典詠流傳開播以來(lái)受到社會(huì)廣泛關(guān)注.我市某校就中華文化我傳承——地方戲曲進(jìn)校園的喜愛(ài)情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問(wèn)題:

圖中A表示很喜歡”,B表示喜歡”,C表示一般”,D表示不喜歡”.

(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_______.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類有__________人;

(4)在抽取的A5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ACB=90°,BAC=20°,點(diǎn)O是AB的中點(diǎn),將OB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α角時(shí)(0°α<180°),得到OP,當(dāng)ACP為等腰三角形時(shí),α的值為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人民生活水平不斷提高,我市 “初中生帶手機(jī)”現(xiàn)象也越來(lái)越多,為了了解家長(zhǎng)對(duì)此現(xiàn)象的態(tài)度,某校數(shù)學(xué)課外活動(dòng)小組隨機(jī)調(diào)查了若干名學(xué)生家長(zhǎng),并將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì),得出如下所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

問(wèn) 1)這次調(diào)查的學(xué)生家長(zhǎng)總?cè)藬?shù)為 .

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖,并求出持“很贊同”態(tài)度的學(xué)生家長(zhǎng)占被調(diào)查總?cè)藬?shù)的百分比.

3)求扇形統(tǒng)計(jì)圖中表示學(xué)生家長(zhǎng)持“無(wú)所謂”態(tài)度的扇形圓心角的度數(shù).

4)該校共有學(xué)生1200人,求贊同的家長(zhǎng)的人數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,AD、BD分別是的內(nèi)角∠BAC、∠ABC的平分線,過(guò)點(diǎn)AAEAD,交BD的延長(zhǎng)線于點(diǎn)E

1)求證:;

2)如圖2,如果AE=AB,且BDDE=23,求BCAB的值;

3)如果∠ABC是銳角,且相似,求∠ABC的度數(shù),并直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的圓心OABC的邊AC上,AC與⊙O分別交于CD兩點(diǎn),⊙O與邊AB相切,且切點(diǎn)恰為點(diǎn)B

1)求證:∠A+2C90°;

2)若∠A30°,AB6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)MN運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案