【題目】如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)α角,得到矩形A'B'C'D',B'C與AD交于點(diǎn)E,AD的延長(zhǎng)線與A'D'交于點(diǎn)F.

(1)如圖①,當(dāng)α=60°時(shí),連接DD',求DD'和A'F的長(zhǎng);

(2)如圖②,當(dāng)矩形A'B'CD'的頂點(diǎn)A'落在CD的延長(zhǎng)線上時(shí),求EF的長(zhǎng);
(3)如圖③,當(dāng)AE=EF時(shí),連接AC,CF,求ACCF的值.

【答案】
(1)

解:①如圖①中,∵矩形ABCD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)α角,得到矩形A'B'C'D',

∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°,

∵α=60°,

∴∠DCD′=60°,

∴△CDD′是等邊三角形,

∴DD′=CD=3.

②如圖①中,連接CF.

∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,

∴△CDF≌△CD′F,

∴∠DCF=∠D′CF= ∠DCD′=30°,

在Rt△CD′F中,∵tan∠D′CF=

∴D′F= ,

∴A′F=A′D′﹣D′F=4﹣


(2)

解:如圖②中,

在Rt△A′CD′中,∵∠D′=90°,

∴A′C2=A′D′2+CD′2,

∴A′C=5,A′D=2,

∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,

∴△A′DF∽△A′D′C,

= ,

= ,

∴DF= ,

同理可得△CDE∽△CB′A′,

= ,

=

∴ED= ,

∴EF=ED+DF=


(3)

解:如圖③中,作FG⊥CB′于G.

∵四邊形A′B′CD′是矩形,

∴GF=CD′=CD=3,

∵SCEF= EFDC= CEFG,

∴CE=EF,∵AE=EF,

∴AE=EF=CE,

∴∠ACF=90°,

∵∠ADC=∠ACF,∠CAD=∠FAC,

∴△CAD∽△FAC,

= ,

∴AC2=ADAF,

∴AF= ,

∵SACF= ACCF= AFCD,

∴ACCF=AFCD=


【解析】(1)①如圖①中,∵矩形ABCD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問(wèn)題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問(wèn)題;(2)由△A′DF∽△A′D′C,可得 = ,推出DF= ,同理可得△CDE∽△CB′A′,由 = ,求出DE,即可解決問(wèn)題;(3)如圖③中,作FG⊥CB′于G,由SACF= ACCF= AFCD,把問(wèn)題轉(zhuǎn)化為求AFCD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問(wèn)題;
【考點(diǎn)精析】利用相似三角形的應(yīng)用和旋轉(zhuǎn)的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解;①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖A在數(shù)軸上所對(duì)應(yīng)的數(shù)為﹣2

1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個(gè)單位長(zhǎng)度,求點(diǎn)B所對(duì)應(yīng)的數(shù);

2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn) B 以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到﹣6所在的點(diǎn)處時(shí),求A,B兩點(diǎn)間距離.

3)在2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)再以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),經(jīng)過(guò)多長(zhǎng)時(shí)間A,B兩點(diǎn)相距4個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題.

程大位明代商人,珠算發(fā)明家,被稱為珠算之父、卷尺之父.少年時(shí),讀書(shū)極為廣博,對(duì)數(shù)學(xué)頗感興趣60歲時(shí)完成其杰作《直指算法統(tǒng)宗》簡(jiǎn)稱《算法統(tǒng)宗》).

在《算法統(tǒng)宗》里記載了一道趣題一百饅頭一百僧,大僧三個(gè)更無(wú)爭(zhēng),小僧三人分一個(gè)大小和尚各幾丁?意思是100個(gè)和尚分100個(gè)饅頭如果大和尚1人分3個(gè),小和尚3人分1個(gè),正好分完.試問(wèn)大、小和尚各多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九章算術(shù)是我國(guó)東漢初年編訂的一部數(shù)學(xué)經(jīng)典著作在它的“方程”一章里,一次方程組是由算籌布置而成的九章算術(shù)中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1、圖圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應(yīng)的常數(shù)項(xiàng)把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來(lái),就是類似地,圖2所示的算籌圖我們可以表述為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,甲、乙兩船同時(shí)由港口A出發(fā)開(kāi)往海島B,甲船沿東北方向向海島B航行,其速度為15海里/小時(shí);乙船速度為20海里/小時(shí),先沿正東方向航行1小時(shí)后,到達(dá)C港口接旅客,停留半小時(shí)后再轉(zhuǎn)向北偏東30°方向開(kāi)往B島,其速度仍為20海里/小時(shí).

(1)求港口A到海島B的距離;

(2)B島建有一座燈塔,在燈塔方圓5海里內(nèi)都可以看見(jiàn)燈塔,問(wèn)甲、乙兩船哪一艘先看到燈塔?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】陳老師和學(xué)生做一個(gè)猜數(shù)游戲,他讓學(xué)生按照如下步驟進(jìn)行計(jì)算:

①任想一個(gè)兩位數(shù)a,把a乘以2,再加上9,把所得的和再乘以2

②把a乘以2,再加上30,把所得的和除以2;

③把①所得的結(jié)果減去②所得的結(jié)果,這個(gè)差即為最后的結(jié)果.

陳老師說(shuō):只要你告訴我最后的結(jié)果,我就能猜出你最初想的兩位數(shù)a

學(xué)生周曉曉計(jì)算的結(jié)果是96,陳老師立即猜出周曉曉最初想的兩位數(shù)是31

請(qǐng)完成

1)由①可列代數(shù)式   ,由②可列代數(shù)式   ,由③可知最后結(jié)果為   ;(用含a的式子表示)

2)學(xué)生小明計(jì)算的結(jié)果是120,你能猜出他最初想的兩位數(shù)是多少嗎?

3)請(qǐng)用自己的語(yǔ)言解釋陳老師猜數(shù)的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“你最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周?chē)囊恍┩瑢W(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下兩個(gè)不完整的統(tǒng)計(jì)圖(如圖).

請(qǐng)根據(jù)上面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下4個(gè)問(wèn)題:

(1)這次抽樣調(diào)查中,共調(diào)查了_____名學(xué)生.

(2)補(bǔ)全條形統(tǒng)計(jì)圖中的缺項(xiàng).

(3)在扇形統(tǒng)計(jì)圖中,選擇教師傳授的占_____%,選擇小組合作學(xué)習(xí)的占_____%.

(4)根據(jù)調(diào)查結(jié)果,估算該校1800名學(xué)生中大約有_____人選擇小組合作學(xué)習(xí)模式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人兩次同時(shí)在一家糧店購(gòu)買(mǎi)大米,兩次大米的價(jià)格分別為每千克a元和b元(a≠b).甲每次買(mǎi)100千克大米,乙每次買(mǎi)100元大米.

(1)用含a、b的代數(shù)式表示:甲兩次購(gòu)買(mǎi)大米共需付款   元,乙兩次共購(gòu)買(mǎi)   千克大米.若甲兩次購(gòu)買(mǎi)大米的平均單價(jià)為每千克Q1元,乙兩次購(gòu)買(mǎi)大米的平均單價(jià)為每千克Q2元.則:Q1=   ;Q2=   

(2)若規(guī)定誰(shuí)兩次購(gòu)糧的平均價(jià)格低,誰(shuí)購(gòu)糧的方式就更合理,請(qǐng)你判斷比較甲、乙兩人的購(gòu)糧方式,哪一個(gè)更合理,并說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新農(nóng)村實(shí)行大面積機(jī)械化種植,為了更好地收割莊稼,農(nóng)田承包大戶張大叔決定購(gòu)買(mǎi)8臺(tái)收割機(jī),現(xiàn)有久保田和春雨兩種品牌的收割機(jī),其中每臺(tái)收割機(jī)的價(jià)格、每天的收割面積如下表銷售商又宣傳說(shuō),購(gòu)買(mǎi)一臺(tái)久保田收割機(jī)比購(gòu)買(mǎi)一臺(tái)春雨收割機(jī)多8萬(wàn)元,購(gòu)買(mǎi)2臺(tái)久保田收割機(jī)比購(gòu)買(mǎi)3臺(tái)春雨收割機(jī)多4萬(wàn)元.

久保田收割機(jī)

春雨收割機(jī)

價(jià)格萬(wàn)元臺(tái)

x

y

收割面積

24

18

求兩種收割機(jī)的價(jià)格;

如果張大叔購(gòu)買(mǎi)收割機(jī)的資金不超過(guò)125萬(wàn)元,那么有哪幾種購(gòu)買(mǎi)方案?

的條件下,若每天要求收割面積不低于150畝,為了節(jié)約資金,那么有沒(méi)有一種最佳購(gòu)買(mǎi)方案呢?

查看答案和解析>>

同步練習(xí)冊(cè)答案