【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=116°時,則∠EPC= .
【答案】
(1)證明:∵四邊形ABCD為正方形,
∴BA=BC,∠ABD=∠CBD=45°,
在△ABP和△CBP中
,
∴△ABP≌△CBP,
∴PA=PC,
∵PA=PE,
∴PC=PE;
(2)解:∵△ABP≌△CBP,
∴∠PAB=∠PCB,
∴∠PAD=∠PCD,
∵PA=PE,
∴∠PAE=∠E,
∴∠PCD=∠E,
而∠DFE=∠PFC,
∴∠CPF=∠EDF=90°,
(3)64°
【解析】(3)∵四邊形ABCD為菱形,
∴BA=BC,∠ABD=∠CBD=58°,∠ADC=∠ABC=116°,
∴∠EDC=64°,
在△ABP和△CBP中
,
∴△ABP≌△CBP,
∴PA=PC,∠PAB=∠PCB,
∴∠PAD=∠PCP,
∵PA=PE,
∴∠PAD=∠PEA,
∴∠PCD=∠PED
而∠DFE=∠PFC,
∴∠CPF=∠EDF=64°.
所以答案是64°.
【考點精析】通過靈活運用菱形的性質(zhì)和正方形的性質(zhì),掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市為了答謝顧客,凡在本超市購物的顧客,均可憑購物小票參與抽獎活動,獎品是三種瓶裝飲料,它們分別是:綠茶、紅茶和可樂,抽獎規(guī)則如下:①如圖是一個材質(zhì)均勻可自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被等分成五個扇形區(qū)域,每個區(qū)域上分別寫有“可”、“綠”、“樂”、“茶”、“紅”字樣;②參與一次抽獎活動的顧客可進行兩次“有效隨機轉(zhuǎn)動”(當(dāng)轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,可獲得指針?biāo)竻^(qū)域的字樣,我們稱這次轉(zhuǎn)動為一次“有效隨機轉(zhuǎn)動”);③假設(shè)顧客轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針指向兩區(qū)域的邊界,顧客可以再轉(zhuǎn)動轉(zhuǎn)盤,直到轉(zhuǎn)動為一次“有效隨機轉(zhuǎn)動”;④當(dāng)顧客完成一次抽獎活動后,記下兩次指針?biāo)竻^(qū)域的兩個字,只要這兩個字的組合和獎品名稱相同(與字的順序無關(guān)),便可獲得相應(yīng)獎品一瓶;不相同時,不能獲得任何獎品.
根據(jù)以上規(guī)則,回答下列問題:
(1)求一次“有效隨機轉(zhuǎn)動”可獲得“樂”字的概率.
(2)有一名顧客憑本超市的購物小票,參與了一次抽獎活動,請你用列表或畫樹狀圖的方法,求該顧客經(jīng)過兩次“有效隨機轉(zhuǎn)動”后,獲得一瓶可樂的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A.四邊相等的四邊形是菱形B.對角線互相平分的四邊形是平行四邊形
C.一組鄰邊相等的矩形是正方形D.對角線互相垂直平分的四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級一班的暑假活動安排中,有一項是小制作評比.作品上交時限為8月1日至30日,班委會把同學(xué)們交來的作品按時間順序每5天組成一組,對每一組的件數(shù)進行統(tǒng)計,繪制成如圖所示的統(tǒng)計圖.已知從左到右各矩形的高度比為2∶3∶4∶6∶4∶1.第三組的頻數(shù)是12.請你回答:
(1)本次活動共有____件作品參賽;
(2)上交作品最多的組有作品____件;
(3)經(jīng)評比,第四組和第六組分別有10件和2件作品獲獎,那么你認(rèn)為這兩組中哪個組獲獎率較高?為什么?
(4)對參賽的每一件作品進行編號并制作成背面完全一致的卡片,背面朝上放置,隨機抽出一張卡片,抽到第四組作品的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并完成填空.
你能比較20152 016和20162 015的大小嗎?
為了解決這個問題,先把問題一般化,比較nn+1和(n+1)n(n≥1,且n為整數(shù))的大。缓髲姆治鰊=1,n=2,n=3…的簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納、猜想得出結(jié)論.
(1)通過計算(可用計算器)比較下列①~⑦組兩數(shù)的大。(在橫線上填上“>”“=”或“<”)
①12____21;②23_____32;③34_____43;④45_____54;
⑤56____65;⑥67_____76;⑦78_____87;
(2)歸納第(1)問的結(jié)果,可以猜想出nn+1和(n+1)n的大小關(guān)系;
(3)根據(jù)以上結(jié)論,可以得出20162017和20172016的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,點C的坐標(biāo)為(0,3),點A在x軸的負(fù)半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y=的圖象經(jīng)過點D,與BC的交點為N.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在周長為10cm的ABCD中,AB≠AD,AC、BD相交于點O,OE⊥BD交AD于點E,連接BE,則△ABE的周長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com