(2012•紹興三模)如圖,點D、E分別在∠ABC的邊BC、AB上,過D、A、C三點的圓的圓心為E,過B、E、F三點的圓的圓心為D,如果∠A=63°,設(shè)∠ABC=θ,那么θ=
18
18
°.
分析:首先連接DE,CE,由AE=CE=DE,DE=DB,根據(jù)等邊對等角與三角形外角的性質(zhì),可求得∠ECA=∠A=63°,∠ECD=2θ,又由三角形內(nèi)角和定理,可得方程63+63+2θ+θ=180,繼而求得答案.
解答:解:連接DE,CE,
∵AE=CE=DE,
∴∠ECA=∠A=63°,∠ECD=∠EDC,
∵DE=DB,
∴∠DEB=∠DBE=θ,
∴∠EDC=∠DEB+∠DBE=2θ,
∴∠ECD=2θ,
∵∠A+∠ACD+∠ABC=180°,
∴63+63+2θ+θ=180,
解得:θ=18°.
故答案為:18°.
點評:此題考查了等腰三角形、三角形外角的性質(zhì)以及三角形內(nèi)角和定理.注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•紹興三模)我們都知道主動吸煙和被動吸煙都危害著人類的健康.為此,聯(lián)合國規(guī)定每年的5月31日為“世界無煙日”.為配合今年的“世界無煙日”宣傳活動,我區(qū)某校九年級二班的同學(xué)們在城區(qū)內(nèi)開展了以“我支持的戒煙方式”為主題的問卷調(diào)查活動,征求居民的意見,并將調(diào)查結(jié)果分析整理后,制成了如下統(tǒng)計圖:

(1)求九年級二班的同學(xué)們一共隨機調(diào)查了多少人?
(2)根據(jù)以上信息,請你把統(tǒng)計圖補充完整;
(3)如果城區(qū)有2萬人,那么請你根據(jù)以上調(diào)查結(jié)果,估計城區(qū)大約有多少人支持“強制戒煙”這種戒煙方式?
(4)為了青少年的健康,針對你們學(xué)校實際提出一條你認(rèn)為最有效的戒煙措施.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•紹興三模)已知拋物線y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,且滿足
a1
a2
=
b1
b2
=
c1
c2
=k(k≠0,1)
.則稱拋物線y1,y2互為“友好拋物線”,則下列關(guān)于“友好拋物線”的說法不正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•紹興三模)(1)計算:
8
-4sin45°+(3-π)0+| -4 |

(2)先化簡:
1
x-3
x3-6x2+9x
x2-2x
-
1-x
2-x
,然后再取一個你喜愛的x的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•紹興三模)在函數(shù)中,我們把關(guān)于x的一次函數(shù)y=ax+b與y=bx+a稱為一對交換函數(shù),如y=3x+1與與y=x+3是一對交換函數(shù).稱函數(shù)y=3x+1與是函數(shù)y=x+3的交換函數(shù).
(1)求函數(shù)y=-
2
3
x+4與交換函數(shù)的圖象的交點坐標(biāo);
(2)若函數(shù)y=-
2
3
x+b(b為常數(shù))與交換函數(shù)的圖象及縱軸所圍三角形的面積為4,求b的值.

查看答案和解析>>

同步練習(xí)冊答案