【題目】如圖,在平面直角坐標(biāo)系中,的三個頂點都在格點上,點的坐標(biāo)為,請解答下列問題:
(1)畫出關(guān)于軸對稱的,點的坐標(biāo)為______;
(2)在網(wǎng)格內(nèi)以點為位似中心,把按相似比放大,得到,請畫出;若邊上任意一點的坐標(biāo)為,則兩次變換后對應(yīng)點的坐標(biāo)為______.
【答案】(1)圖見解析,(2,1);(2)圖見解析,
【解析】
(1)依次作出點A、B、C三點關(guān)于x軸的對稱點A1、B1、C1,再順次連接即可;根據(jù)關(guān)于x軸對稱的點的坐標(biāo)特點:橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)寫出即可;
(2)根據(jù)位似圖形的性質(zhì)作圖即可;先求出經(jīng)過一次變換(關(guān)于x軸對稱)的點的坐標(biāo),再根據(jù)關(guān)于(1,1)為位似中心的點的坐標(biāo)規(guī)律:橫坐標(biāo)=-2×(原橫坐標(biāo)-1)+1,縱坐標(biāo)=-2×(原縱坐標(biāo)-1)+1,代入化簡即可.
解:(1)如圖所示,點的坐標(biāo)為(2,1);
(2)如圖所示,點的坐標(biāo)為,則其關(guān)于x軸對稱的點的坐標(biāo)是(m,-n),關(guān)于點位似后的坐標(biāo)為(,),即兩次變換后對應(yīng)點的坐標(biāo)為:.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長都是1的小正方形組成的網(wǎng)格中,P,Q,B,C均為格點,線段PQ、BC相交于點A.
(Ⅰ)PA:AQ= ;
(Ⅱ)尺規(guī)作圖:設(shè)∠QAB=α,將線段AB繞點A逆時針旋轉(zhuǎn)α+90°的角,點B的對應(yīng)點為B′,請你畫出點B′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.
(1)求此拋物線的解析式;
(2)當(dāng)PA+PB的值最小時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有點A(1,5),B(2,2),將線段AB繞P點逆時針旋轉(zhuǎn)90°得到線段CD,A和C對應(yīng),B和D對應(yīng).
(1)若P為AB中點,畫出線段CD,保留作圖痕跡;
(2)若D(6,2),則P點的坐標(biāo)為 ,C點坐標(biāo)為 .
(3)若C為直線上的動點,則P點橫、縱坐標(biāo)之間的關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為個單位的正方形,在建立平面直角坐標(biāo)系后,的頂點均在格點上,點的坐標(biāo)為.
以點為位似中心,在軸的左側(cè)將放大得到,使得的面積是面積的倍,在網(wǎng)格中畫出圖形,并直接寫出點所對應(yīng)的點的坐標(biāo).
在網(wǎng)格中,畫出繞原點順時針旋轉(zhuǎn)的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于點、,交軸于點,在軸上有一點,連接.
(1)求二次函數(shù)的表達式;
(2)若點為拋物線在軸負半軸上方的一個動點,求面積的最大值;
(3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在東西方向的海岸線l上有長為300米的碼頭AB,在碼頭的最西端A處測得輪船M在它的北偏東45°方向上;同一時刻,在A點正東方向距離100米的C處測得輪船M在北偏東22°方向上.
(1)求輪船M到海岸線l的距離;(結(jié)果精確到0.01米)
(2)如果輪船M沿著南偏東30°的方向航行,那么該輪船能否行至碼頭AB靠岸?請說明理由.
(參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,≈1.732.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com