如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點(diǎn)N.求證:BN⊥DM.

【答案】分析:證明△BAE≌△DAM,得∠DMA=∠BEA,證明∠BNM=90°即可.
解答:證明:
,
∴△BAE≌△DAM,即∠DMA=∠BEA,
∵∠DEN=∠BEA,∴∠DEN=∠DMA,
∵∠DNE=180°-∠DEN,∠DAM=180°-∠DMA,
∴∠DNE=∠DAM=90°,
∴BN⊥DM.
點(diǎn)評(píng):本題考查了正方形四邊均相等,各內(nèi)角為90°的性質(zhì),考查了全等三角形的判定,本題中求證∠DNE=∠DAM是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點(diǎn)N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),點(diǎn)F是CD延長(zhǎng)線上一點(diǎn),連接EF,若BE=DF,點(diǎn)P是EF的中點(diǎn).
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD,點(diǎn)E在BC邊上,將△DCE繞某點(diǎn)G旋轉(zhuǎn)得到△CBF,點(diǎn)F恰好在AB邊上.
(1)請(qǐng)畫出旋轉(zhuǎn)中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長(zhǎng)為2a,當(dāng)CE=
a
a
時(shí),S△FGE=S△FBE;當(dāng)CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時(shí),S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的對(duì)角線交于O,過(guò)O點(diǎn)作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E是AC上的一點(diǎn),過(guò)點(diǎn)A作AG⊥BE,垂足為G,AG交BD于點(diǎn)F.
(1)試說(shuō)明OE=OF;
(2)當(dāng)AE=AB時(shí),過(guò)點(diǎn)E作EH⊥BE交AD邊于H.若該正方形的邊長(zhǎng)為1,求AH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案