【題目】如圖,AB∥CD,AD∥BC,∠A﹦3∠B.求∠A、∠B、∠C、∠D的度數(shù).

【答案】1350,450,1350,450

【解析】

根據(jù)AD∥BC,∠A=3∠B,

可得:∠A+∠B=180°,4∠B=180°,解得∠B=45°,進(jìn)而可得:∠A=3∠B=3×45°=135°,

再根據(jù)ABCD,可得:∠A+∠D=180°,∠B+∠C=180°,進(jìn)而可得:∠D=180°-∠A=180°-135°=45°,∠C=180°-∠B=180°-45°=135°.

ADBC,A=3B,

∴∠A+B=180°,4B=180°,解得∠B=45°,

∴∠A=3B=3×45°=135°,

ABCD,

∴∠A+D=180°,B+C=180°,

∴∠D=180°-A=180°-135°=45°,C=180°-B=180°-45°=135°,

:A、B、CD的度數(shù)分別為:135°,45°,135°,45°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)機(jī)械廠加工車間有85名工人,平均每人每天加工大齒輪16個(gè)或小齒輪10個(gè),已知2個(gè)大齒輪與3個(gè)小齒輪配成一套,問(wèn)需分別安排多少名工人加工大、小齒輪,才能使每天加工的大小齒輪剛好配套?

(2)某蔬菜公司的一種綠色蔬菜,若在市場(chǎng)上直接銷售,每噸利潤(rùn)為1000元,經(jīng)粗加工后銷售,每噸利潤(rùn)可達(dá)4500元,經(jīng)精加工后銷售,每噸利潤(rùn)漲至7500元,當(dāng)?shù)匾患夜臼召?gòu)這種蔬菜140噸,該公司的加工生產(chǎn)能力是:如果對(duì)蔬菜進(jìn)行粗加工,每天可加工16噸,如果進(jìn)行精加工,每天可加工6噸,但兩種加工方式不能同時(shí)進(jìn)行,受季節(jié)等條件限制,公司必須在15天將這批蔬菜全部銷售或加工完畢,為此公司研制了三種可行方案:

方案一:將蔬菜全部進(jìn)行粗加工.

方案二:盡可能多地對(duì)蔬菜進(jìn)行精加工,沒來(lái)得及進(jìn)行加工的蔬菜,在市場(chǎng)上直接銷售.

方案三:將部分蔬菜進(jìn)行精加工,其余蔬菜進(jìn)行粗加工,并恰好15天完成.

你認(rèn)為哪種方案獲利最多?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電腦店有A、B兩種型號(hào)的打印機(jī)和C、D、E三種芯片出售.每種型號(hào)的打印機(jī)均需要一種芯片配套才能打。
(1)下列是該店用樹形圖或列表設(shè)計(jì)的配套方案,①的位置應(yīng)填寫 , ②的位置應(yīng) 填寫
(2)若僅有B型打印機(jī)與E種芯片不配套,則上面(1)中的方案配套成功率是

芯片
配套方案
打印機(jī)

C

D

E

A

(A,C)

(A,D)

B

(B,C)

(B,D)

(B,E)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過(guò)點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=ADAB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】骰子是一種特別的數(shù)字立方體(如圖),它符合規(guī)則:相對(duì)兩面的點(diǎn)數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是(  ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一塊破損的木板.

(1)請(qǐng)你設(shè)計(jì)一種方案,檢驗(yàn)?zāi)景宓膬蓷l直線邊緣 AB、CD 是否平行;

(2)AB∥CD,連接 BC,過(guò)點(diǎn) A AM⊥BC M,垂足為 M,畫出圖形,并寫出∠BCD 與∠BAM 的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是弦.
(1)請(qǐng)你按下面步驟畫圖(畫圖或作輔助線時(shí)先使用鉛筆畫出,確定后必須使用黑色字跡的簽字筆描黑); 第一步,過(guò)點(diǎn)A作∠BAC的角平分線,交⊙O于點(diǎn)D;
第二步,過(guò)點(diǎn)D作AC的垂線,交AC的延長(zhǎng)線于點(diǎn)E.
第三步,連接BD.
(2)求證:AD2=AEAB;
(3)連接EO,交AD于點(diǎn)F,若5AC=3AB,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列多項(xiàng)式的乘法中,不能用平方差公式計(jì)算的是(  )

A. (a+b)(a-b) B. (x-2y)(-x+2y) C. (x-2y)(-x-2y) D. (x-y)(y+0.5x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示的有理數(shù)為﹣6,點(diǎn)B表示的有理數(shù)為6,點(diǎn)P從點(diǎn)A出發(fā)以每秒4個(gè)單位長(zhǎng)度的速度在數(shù)軸上由AB運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B后立即返回,仍然以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)至點(diǎn)A停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).

(1)求t=1時(shí)點(diǎn)P表示的有理數(shù);

(2)求點(diǎn)P與點(diǎn)B重合時(shí)的t值;

(3)在點(diǎn)P沿?cái)?shù)軸由點(diǎn)A到點(diǎn)B再回到點(diǎn)A的運(yùn)動(dòng)過(guò)程中,求點(diǎn)P與點(diǎn)A的距離(用含t的代數(shù)式表示);

(4)當(dāng)點(diǎn)P表示的有理數(shù)與原點(diǎn)的距離是2個(gè)單位長(zhǎng)度時(shí),請(qǐng)求出所有滿足條件的t值.

查看答案和解析>>

同步練習(xí)冊(cè)答案