【題目】一個不透明的袋子中裝有5個黑球和3個白球,這些球的大小、質(zhì)地完全相同,隨機從袋子中摸出4個球,則下列事件是必然事件的是( )
A.摸出的四個球中至少有一個球是白球
B.摸出的四個球中至少有一個球是黑球
C.摸出的四個球中至少有兩個球是黑球
D.摸出的四個球中至少有兩個球是白球
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10, 求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖坐標系中,O(0,0) ,A(6,6),B(12,0).將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE=,則CE : DE的值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程(a2-1)x2+(1-a)x+a-2=0,下列結(jié)論正確的是( )
A. 當a≠±1時,原方程是一元二次方程。
B. 當a≠1時,原方程是一元二次方程。
C. 當a≠-1時,原方程是一元二次方程。
D. 原方程是一元二次方程。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O在線段AB上,AO=2,OB=1,OC為射線,且∠BOC=60,動點P以每秒2個單位長度的速度從點O出發(fā),沿射線OC做勻速運動,設(shè)運動時間為t秒.
(1)當t= 時,則OP= ,S△ABP= ;
(2)當△ABP是直角三角形時,求t的值;
(3)如圖2,當AP=AB時,過點A作AQ∥BP,并使得∠QOP=∠B,求證:AQ·BP=3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張長方形紙片與一張直角三角形紙片(∠EFG=90°)按如圖所示的位置擺放,
使直角三角形紙片的一個頂點E恰好落在長方形紙片的一邊AB上,已知∠BEF=21°,則
∠CMF= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,E是直線AB,CD內(nèi)部一點,AB∥CD,連接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,則∠AED=
②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.
(2)拓展應(yīng)用:
如圖②,射線FE與l1 , l2交于分別交于點E、F,AB∥CD,a,b,c,d分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com