【題目】(本小題滿分10分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
【答案】(1),;(2)P,.
【解析】
試題(1)由點(diǎn)A在一次函數(shù)圖象上,結(jié)合一次函數(shù)解析式可求出點(diǎn)A的坐標(biāo),再由點(diǎn)A的坐標(biāo)利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點(diǎn)B坐標(biāo);
(2)作點(diǎn)B作關(guān)于x軸的對(duì)稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,連接PB.由點(diǎn)B、D的對(duì)稱性結(jié)合點(diǎn)B的坐標(biāo)找出點(diǎn)D的坐標(biāo),設(shè)直線AD的解析式為y=mx+n,結(jié)合點(diǎn)A、D的坐標(biāo)利用待定系數(shù)法求出直線AD的解析式,令直線AD的解析式中y=0求出點(diǎn)P的坐標(biāo),再通過分割圖形結(jié)合三角形的面積公式即可得出結(jié)論.
試題解析:(1)把點(diǎn)A(1,a)代入一次函數(shù)y=-x+4,
得:a=-1+4,解得:a=3,
∴點(diǎn)A的坐標(biāo)為(1,3).
把點(diǎn)A(1,3)代入反比例函數(shù)y=,
得:3=k,
∴反比例函數(shù)的表達(dá)式y=,
聯(lián)立兩個(gè)函數(shù)關(guān)系式成方程組得:,
解得:,或,
∴點(diǎn)B的坐標(biāo)為(3,1).
(2)作點(diǎn)B作關(guān)于x軸的對(duì)稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,此時(shí)PA+PB的值最小,連接PB,如圖所示.
∵點(diǎn)B、D關(guān)于x軸對(duì)稱,點(diǎn)B的坐標(biāo)為(3,1),
∴點(diǎn)D的坐標(biāo)為(3,- 1).
設(shè)直線AD的解析式為y=mx+n,
把A,D兩點(diǎn)代入得:,
解得:,
∴直線AD的解析式為y=-2x+5.
令y=-2x+5中y=0,則-2x+5=0,
解得:x=,
∴點(diǎn)P的坐標(biāo)為(,0).
S△PAB=S△ABD-S△PBD=BD(xB-xA)-BD(xB-xP)
=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:拋物線交x軸于A,C兩點(diǎn),交y軸于點(diǎn)B,且OB=2CO.
(1)求二次函數(shù)解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個(gè)動(dòng)點(diǎn)M、N,且點(diǎn)N在點(diǎn)M的左側(cè),過M、N作x軸的垂線交x軸于點(diǎn)G、H兩點(diǎn),當(dāng)四邊形MNHG為矩形時(shí),求該矩形周長(zhǎng)的最大值;
(3) 拋物線對(duì)稱軸上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店以每件50元的價(jià)格購進(jìn)800件恤,第一個(gè)月以單價(jià)80元銷售,售出了200件.第二個(gè)月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,該商店為增加銷售量決定降價(jià)銷售,根據(jù)市場(chǎng)調(diào)查,單價(jià)每降低1元,可多銷售出10件,但最低單價(jià)應(yīng)不低于50元,第二個(gè)月結(jié)束后,該商店對(duì)剩余的T恤一次性清倉,清倉時(shí)單價(jià)為40元.設(shè)第二個(gè)月單價(jià)降低元,
(1)填表(用含的代數(shù)式完成表格中的①②③處)
時(shí)間 | 第一個(gè)月 | 第二個(gè)月 | 清倉 |
單價(jià)(元) | 80 | _______ | 40 |
銷售量(件) | 200 | _______ | _______ |
(2)如果該商店希望通過銷售這800件恤獲利9000元,那么第二個(gè)月單價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,于點(diǎn),于點(diǎn),為邊的中點(diǎn),連接,則下列結(jié)論:①,②,③為等邊三角形,④當(dāng)時(shí),.請(qǐng)將正確結(jié)論的序號(hào)填在橫線上__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的布袋中,裝有紅、黃、白三種只有顏色不同的小球,其中紅色小球有6個(gè),黃、白色小球的數(shù)量相同,為估計(jì)袋中黃色小球的數(shù)量,每次將袋中小球攪勻后摸出一個(gè)小球記下顏色放回,再攪勻多次試驗(yàn)發(fā)現(xiàn)摸到紅色的頻率是,則估計(jì)黃色小球的個(gè)數(shù)是( 。
A.21B.40C.42D.48
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi),給定不在同一直線上的點(diǎn)A,B,C,如圖所示.點(diǎn)O到點(diǎn)A,B,C的距離均等于a(a為常數(shù)),到點(diǎn)O的距離等于a的所有點(diǎn)組成圖形G,的平分線交圖形G于點(diǎn)D,連接AD,CD.
(1)求證:AD=CD;
(2)過點(diǎn)D作DEBA,垂足為E,作DFBC,垂足為F,延長(zhǎng)DF交圖形G于點(diǎn)M,連接CM.若AD=CM,求直線DE與圖形G的公共點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:y1=﹣2x2+4x+2與C2:y2=﹣x2+mx+n的頂點(diǎn)相同”.
(1)求拋物線C2的解析式.
(2)點(diǎn)A是拋物線C2上在第一象限的動(dòng)點(diǎn),過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《西安市生活垃圾分類管理辦法》由西安市人民政府第86次常務(wù)會(huì)議審議通過,于2019年9月l日起施行.為了解同學(xué)們對(duì)“垃圾分類知識(shí)”的了解情況,張紅武在九年級(jí)隨機(jī)抽取了若干名同學(xué)進(jìn)行了問卷調(diào)查,將調(diào)查結(jié)果分為以下四個(gè)等級(jí),:非常了解、:比較了解、:知道的很少、:完全不了解.并將調(diào)查結(jié)果繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖.
(1)補(bǔ)全下面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)所抽取同學(xué)問卷結(jié)果的中位數(shù)落在哪個(gè)等級(jí)___________(填字母);
(3)若九年級(jí)有1300名同學(xué),年級(jí)部準(zhǔn)備對(duì)調(diào)查結(jié)果為“知道的很少”和“完全不了解”的兩部分同學(xué)進(jìn)行“垃圾分類”知識(shí)的普及和培訓(xùn),請(qǐng)你估算九年級(jí)有多少人需要進(jìn)行“垃圾分類”知識(shí)的普及和培訓(xùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②當(dāng)x>﹣1時(shí),y隨x增大而減小;③a+b+c<0;④若方程ax2+bx+c﹣m=0沒有實(shí)數(shù)根,則m>2; ⑤3a+c<0.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com