【題目】(2016浙江省舟山市第9題)如圖,矩形ABCD中,AD=2,AB=3,過點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長(zhǎng)是(

A. B. C.1 D.

【答案】D

【解析】

試題分析:過F作FHAE于H,根據(jù)矩形的性質(zhì)得到AB=CD,ABCD,推出四邊形AECF是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到AF=CE,根據(jù)相似三角形的性質(zhì)得到,于是得到AE=AF,列方程即可得到結(jié)論.過F作FHAE于H,四邊形ABCD是矩形,AB=CD,ABCD,AECF,

四邊形AECF是平行四邊形,AF=CE,DE=BF,AF=3DE,AE=,

∵∠FHA=D=DAF=90°,∴∠AFH+HAF=DAE+FAH=90°∴∠DAE=AFH,

∴△ADE∽△AFH,,AE=AF,AE==3DE,DE=,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時(shí)魚竿可收縮,完全收縮后,魚竿長(zhǎng)度即為第1節(jié)套管的長(zhǎng)度(如圖1所示):使用時(shí),可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長(zhǎng)50cm,第2節(jié)套管長(zhǎng)46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時(shí),為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長(zhǎng)度的重疊,設(shè)其長(zhǎng)度為xcm.

(1)請(qǐng)直接寫出第5節(jié)套管的長(zhǎng)度;

(2)當(dāng)這根魚竿完全拉伸時(shí),其長(zhǎng)度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,通過觀察,用所發(fā)現(xiàn)的規(guī)律確定22017的個(gè)位數(shù)字是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:∠ABC的平分線BF△ABC∠ACB的相鄰?fù)饨堑钠椒志CF相交于點(diǎn)F,過FDF∥BC,交ABD,交ACE

問:(1)圖中有幾個(gè)等腰三角形?為什么?

2BD,CE,DE之間存在著什么關(guān)系?請(qǐng)證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC,∠BAC=90°,BC=10cm,直線CM⊥BC,動(dòng)點(diǎn)D從點(diǎn)C開始沿射線CB方向以每秒3厘米的速度運(yùn)動(dòng),動(dòng)點(diǎn)E也同時(shí)從點(diǎn)C開始在直線CM上以每秒2厘米的速度運(yùn)動(dòng),連接AD、AE,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)求AB的長(zhǎng);(2)當(dāng)t為多少時(shí),△ABD的面積為15cm2?

(3)當(dāng)t為多少時(shí),△ABD≌△ACE,并簡(jiǎn)要說明理由.(請(qǐng)?jiān)趥溆脠D中畫出具體圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)2、5、4、3、5、4、5的中位數(shù)和眾數(shù)分別是( 。
A.3.5,5
B.4,4
C.4,5
D.4.5,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c是三角形ABC的三邊,且b2+2ab=c2+2ac,則三角形ABC的形狀是三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016湖南省岳陽市第24題)如圖,直線y=x+4交于x軸于點(diǎn)A,交y軸于點(diǎn)C,過A、C兩點(diǎn)的拋物線F1交x軸于另一點(diǎn)B(1,0).

(1)求拋物線F1所表示的二次函數(shù)的表達(dá)式;

(2)若點(diǎn)M是拋物線F1位于第二象限圖象上的一點(diǎn),設(shè)四邊形MAOC和BOC的面積分別為S四邊形MAOC和SBOC,記S=S四邊形MAOCSBOC,求S最大時(shí)點(diǎn)M的坐標(biāo)及S的最大值;

(3)如圖,將拋物線F1沿y軸翻折并復(fù)制得到拋物線F2,點(diǎn)A、B與(2)中所求的點(diǎn)M的對(duì)應(yīng)點(diǎn)分別為A、B、M,過點(diǎn)M作MEx軸于點(diǎn)E,交直線AC于點(diǎn)D,在x軸上是否存在點(diǎn)P,使得以A、D、P為頂點(diǎn)的三角形與ABC相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,點(diǎn)G、E、F分別在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案