【題目】如圖,正方形ABCD中,AB=3,點E在邊CD上,且CD=3DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.則BG的長為( )
A. 1B. 2C. 1.5D. 2.5
【答案】C
【解析】
先求出DE、CE的長,再根據(jù)翻折的性質(zhì)可得AD=AF,EF=DE,∠AFE=∠D=90°,再利用“HL”證明Rt△ABG和Rt△AFG全等,根據(jù)全等三角形對應(yīng)邊相等可得BG=FG,再設(shè)BG=FG=x,然后表示出EG、CG,在Rt△CEG中,利用勾股定理列出方程求出x=1.5,即可解答.
∵正方形ABCD中,AB=3,CD=3DE,
∴DE=×3=1,CE=31=2,
∵△ADE沿AE對折至△AFE,
∴AD=AF,EF=DE=1,∠AFE=∠D=90°,
∴AB=AF=AD,
在Rt△ABG和Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL),
∴BG=FG,
設(shè)BG=FG=x,則EG=EF+FG=1+x,CG=3x,
在Rt△CEG中,EG=CG+2,
即(1+x) =(3x) +2,
解得,x=1.5,
∴CG=31.5=1.5,
∴BG=CG=1.5,
故選C
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=4,將△ABC繞點A順時針旋轉(zhuǎn)30°,得到△ACD,延長AD交BC的延長線于點E,則DE的長為__________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O為△ABC(∠A<∠ABC)的外接圓,且AB為的直徑,AB=8,點D為AB延長線上一點,點 E為半徑OB上一點,連接CD、CE、OC,且∠BCD=∠A.
(1)求證:CD為的切線;
(2)若CB=CE,求證:CE2=CO2-OA·OE;
(3)在(2)的條件下,求OE+BC的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點E是正方形ABCD邊CD上任意一點,以DE為邊作正方形DEFG,連接BF,點M是線段BF中點,射線EM與BC交于點H,連接CM.
(1)請直接寫出CM和EM的數(shù)量關(guān)系和位置關(guān)系;
(2)把圖1中的正方形DEFG繞點D順時針旋轉(zhuǎn)45°,此時點F恰好落在線段CD上,如圖2,其他條件不變,(1)中的結(jié)論是否成立,請說明理由;
(3)把圖1中的正方形DEFG繞點D順時針旋轉(zhuǎn)90°,此時點E、G恰好分別落在線段AD、CD上,如圖3,其他條件不變,(1)中的結(jié)論是否成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校創(chuàng)建“環(huán)保示范學!,為了解全校學生參加環(huán)保類社團的意愿,在全校隨機抽取了50名學生進行問卷調(diào)查.問卷給出了五個社團供學生選擇(學生可根據(jù)自己的愛好選擇一個社團,也可以不選),對選擇了社團的學生的問卷情況進行了統(tǒng)計,如下表:
社團名稱 | A 酵素制作社團 | B 回收材料小制作社團 | C 垃圾分類社團 | D 環(huán)保義工社團 | E 綠植養(yǎng)護社團 |
人數(shù) | 10 | 15 | 5 | 10 | 5 |
(1)根據(jù)以上信息填空:這5個數(shù)的中位數(shù)是______;扇形圖中沒選擇的百分比為______;
(2)①補全條形統(tǒng)計圖;②若該校有1400名學生,根據(jù)調(diào)查統(tǒng)計情況,請估計全校有多少學生愿意參加環(huán)保義工社團;
(3)若小詩和小雨兩名同學在酵素制作社團或綠植養(yǎng)護社團中任意選擇一個參加,請用樹狀圖或列表法求出這兩名同學同時選擇綠植養(yǎng)護社團的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在參加了宜昌市教育質(zhì)量綜合評價學業(yè)素養(yǎng)測試后,隨機抽取八年級部分學生,針對發(fā)展水平四個維度“閱讀素養(yǎng)、數(shù)學素養(yǎng)、科學素養(yǎng)、人文素養(yǎng)”,開展了“你最需要提升的學業(yè)素養(yǎng)”問卷調(diào)查(每名學生必選且只能選擇一項).小明、小穎和小雯在協(xié)助老師進行統(tǒng)計后,有這樣一段對話:
小明:“選科學素養(yǎng)和人文素養(yǎng)的同學分別為人,人.”
小穎:“選數(shù)學素養(yǎng)的同學比選閱讀素養(yǎng)的同學少人.”
小雯:“選科學素養(yǎng)的同學占樣本總數(shù)的.”
(1)這次抽樣調(diào)查了多少名學生?
(2)樣本總數(shù)中,選“閱讀素養(yǎng)”、“數(shù)學素養(yǎng)”的學生各多少人?
(3)如圖是調(diào)查結(jié)果整理后繪制成的扇形圖.請直接在橫線上補全相關(guān)百分比;
(4)該校八年級有學生人,請根據(jù)調(diào)查結(jié)果估計全年級選擇“閱讀素養(yǎng)”的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平面直角坐標系中,點O為坐標原點,直線y=﹣x+b與x軸交于點A,與y軸交于點C.經(jīng)過點A,C的拋物線y=ax2+3ax﹣3與x軸的另一個交點為點B.
(1)如圖1,求a的值;
(2)如圖2,點D,E分別在線段AC,AB上,且BE=2AD,連接DE,將線段DE繞點D順時針旋轉(zhuǎn)得到線段DF,且旋轉(zhuǎn)角∠EDF=∠OAC,連接CF,求tan∠ACF的值;
(3)如圖3,在(2)的條件下,當∠DFC=135°時,在線段AC的延長線上取點M,過點M作MN∥DE交拋物線于點N,連接DN,EM,若MN=DF,求點N的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某書店購進甲、乙兩種圖書共100本,甲、乙兩種圖書的進價分別為每本15元、35元,甲、乙兩種圖書的售價分別為每本20元、45元.
(1)若書店購書恰好用了2300元,求購進的甲、乙圖書各多少本?
(2)銷售時,甲圖書打8.5折,乙圖書不打折.若甲、乙兩種圖書全部銷售完后共獲利,求購進的甲、乙圖書各多少本?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com