【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2-2mx-3 (m≠0)與y軸交于點(diǎn)A,其對(duì)稱(chēng)軸與x軸交于點(diǎn)B頂點(diǎn)為C點(diǎn).
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)若∠ACB=45°,求此拋物線的表達(dá)式;
(3)在(2)的條件下,垂直于軸的直線與拋物線交于點(diǎn)P(x1,y1)和Q(x2,y2),與直線AB交于點(diǎn)N(x3,y3),若x3<x1<x2,結(jié)合函數(shù)的圖象,直接寫(xiě)出x1+x2+x3的取值范圍為.
【答案】(1)A(0,-3),B(1,0);(2)y=x2-2x-3;(3).
【解析】試題分析:(1)利用待定系數(shù)法、對(duì)稱(chēng)軸公式即可解決問(wèn)題;
(2)確定點(diǎn)C坐標(biāo),利用待定系數(shù)法即可解決問(wèn)題;
(3)如圖,當(dāng)直線l在直線l1與直線l2之間時(shí),x3<x1<x2,求出直線l經(jīng)過(guò)點(diǎn)A、點(diǎn)C時(shí)的x1+x3+x2的值即可解決問(wèn)題;
試題解析:解:(1)∵拋物線y=mx2﹣2mx﹣3 (m≠0)與y軸交于點(diǎn)A,∴點(diǎn)A的坐標(biāo)為(0,﹣3);
∵拋物線y=mx2﹣2mx﹣3 (m≠0)的對(duì)稱(chēng)軸為直線x=1,∴點(diǎn)B的坐標(biāo)為(1,0).
(2)∵∠ACB=45°,∴點(diǎn)C的坐標(biāo)為(1,﹣4),把點(diǎn)C代入拋物線y=mx2﹣2mx﹣3
得出m=1,∴拋物線的解析式為y=x2﹣2x﹣3.
(3)如圖,當(dāng)直線l1經(jīng)過(guò)點(diǎn)A時(shí),x1=x3=0,x2=2,此時(shí)x1+x3+x2=2,當(dāng)直線l2經(jīng)過(guò)點(diǎn)C時(shí),直線AB的解析式為y=3x﹣3,∵C(1,﹣4),∴y=﹣4時(shí),x=﹣.
此時(shí),x1=x2=1,x3=﹣,此時(shí)x1+x3+x2=,當(dāng)直線l在直線l1與直線l2之間時(shí),x3<x1<x2,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x,y的方程組
(1)請(qǐng)直接寫(xiě)出方程的所有正整數(shù)解
(2)若方程組的解滿(mǎn)足x+y=0,求m的值
(3)無(wú)論實(shí)數(shù)m取何值,方程x-2y+mx+5=0總有一個(gè)固定的解,請(qǐng)直接寫(xiě)出這個(gè)解?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC的頂點(diǎn)都在網(wǎng)格線的交點(diǎn)上,點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(2,0),點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(﹣1,﹣2).
(1)根據(jù)上述條件,在網(wǎng)格中建立平面直角坐標(biāo)系xOy;
(2)畫(huà)出△ABC分別關(guān)于y軸的對(duì)稱(chēng)圖形△A1B1C1;
(3)寫(xiě)出點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,△ADC與△ABC關(guān)于直線AC對(duì)稱(chēng),AE與CD垂直交BC的延長(zhǎng)線于點(diǎn)E,∠EAF=45°,且AF與AB在AE的兩側(cè),EF⊥AF.
(1)依題意補(bǔ)全圖形.
(2)①在AE上找一點(diǎn)P,使點(diǎn)P到點(diǎn)B,點(diǎn)C的距離和最短;
②求證:點(diǎn)D到AF,EF的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【背景知識(shí)】數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié) 合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn) A、點(diǎn) B 表示的數(shù)分別為 a、b,則A、B 兩點(diǎn)之間的距離 AB= ,線段 AB 的中點(diǎn)表示的數(shù)為 .
【問(wèn)題情境】如圖,數(shù)軸上點(diǎn)A表示的數(shù)為-2,點(diǎn)B表示的數(shù)為8,點(diǎn)P從點(diǎn) A 出發(fā), 以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒 2個(gè)單 位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
【綜合運(yùn)用】(1) 填空:
①A、B兩點(diǎn)之間的距離AB=__________,線段AB的中點(diǎn)表示的數(shù)為_______;
②用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為_______;點(diǎn)Q表示的數(shù)為_____.
(2) 求當(dāng)t為何值時(shí),P、Q 兩點(diǎn)相遇,并寫(xiě)出相遇點(diǎn)所表示的數(shù);
(3)求當(dāng)t為何值時(shí),PQ=AB;
(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn) P在運(yùn)動(dòng)過(guò)程中,線段MN的長(zhǎng)度是否發(fā) 生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的集合里:0,-3.14,-(-10),,-4,15%,,0.3,,10.01001000100001…
非負(fù)整數(shù)集合:{ …}
正分?jǐn)?shù)集合:{ …}
無(wú)理數(shù)集合:{ …}
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀第①小題的計(jì)算方法,再計(jì)算第②小題.
①–5+(–9)+17+(–3)
解:原式=[(–5)+(–)]+[(–9)+(–)]+(17+)+[(–3+(–)]
=[(–5)+(–9)+(–3)+17]+[(–)+(–)+(–)+]
=0+(–1)
=–1.
上述這種方法叫做拆項(xiàng)法.靈活運(yùn)用加法的交換律、結(jié)合律可使運(yùn)算簡(jiǎn)便.
②仿照上面的方法計(jì)算:(﹣2000)+(﹣1999)+4000+(﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,
(1)寫(xiě)出數(shù)軸上點(diǎn)B表示的數(shù) ;
(2)|5﹣3|表示5與3之差的絕對(duì)值,實(shí)際上也可理解為5與3兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點(diǎn)與表示有理數(shù)3的點(diǎn)之間的距離.試探索:
①:若|x﹣8|=2,則x= .
②:|x+12|+|x﹣8|的最小值為 .
(3)動(dòng)點(diǎn)P從O點(diǎn)出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.求當(dāng)t為多少秒時(shí)?A,P兩點(diǎn)之間的距離為2;
(4)動(dòng)點(diǎn)P,Q分別從O,B兩點(diǎn),同時(shí)出發(fā),點(diǎn)P以每秒5個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),Q點(diǎn)以P點(diǎn)速度的兩倍,沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問(wèn)當(dāng)t為多少秒時(shí)?P,Q之間的距離為4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有理數(shù)a、b在數(shù)軸上的對(duì)應(yīng)點(diǎn)如圖所示.
(1)已知a=–2.3,b=0.4,計(jì)算|a+b|–|a|–|1–b|的值;
(2)已知有理數(shù)a、b,計(jì)算|a+b|–|a|–|1–b|的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com